

2

First edition

MASTERING
MONERO

The future of private transactions

SerHack and the Monero Community

NOT FOR SELLING
ONLY FOR PERSONAL USE

3

Credits

Content
•	 4matter
•	 Amichateur
•	 Anonimal
•	 ArticMine
•	 Cryptochangements
•	 dEBRUYNE
•	 Isthmus
•	 Midipoet
•	 moneroexamples
•	 QuickBASIC
•	 Rehrar
•	 Sarang Noether
•	 Xeagu

Designers
•	 Gustaf Baltsar Garnow
•	 TheMonera

Illustrator
•	 Andrés Fernández Cordón

Publisher
•	 Justin Ehrenhofer

Editor
•	 UncagedPotential

4

5

Mastering Monero is made available as a free digital resource
through the generosity of Monero FFS donors. The author and
community have invested over 2100 hours into crafting this
book as a helpful guide for both novice and experienced Monero
users. We hope that you find this reference to be valuable and
share it widely.

License for the content :
Attribution-NonCommercial-ShareAlike 4.0 International (CC
BY-NC-SA 4.0)
License for the cover :
Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0)
License for the images :
Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0).

Published by LernoLibro LLC.

First edition: December 2018.

This free PDF was released on Monero's 5th Anniversary,
18th April 2019.

Mastering Monero is an extensive community effort, and
such lengthy resources are likely to contain mistake(s).

If you find any technical issues or grammatical/spelling
mistakes, please report your finding to:
support@masteringmonero.com

NOT FOR SELLING
ONLY FOR PERSONAL USE

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

6

5	 Preface 	 Writing Mastering Monero

10	 Chapter 1 	Introduction to cryptocurrencies 	
		 & Monero

33	 Chapter 2 	Getting started: receiving,
		 storing and sending Monero

56	 Chapter 3 	How Monero works

73	 Chapter 4 	The Monero network

105	 Chapter 5 	A deep dive into Monero &
		 cryptography

142	 Chapter 6 	Community and contributing

151	 Chapter 7 	Monero integration for
		 	developers

182	 Chapter 8 	Wallet guide and
		 	troubleshooting tips

198	 Glossary

Table of Content

7

Writing Mastering Monero
Preface

About the author

I am Nico (“SerHack”), an Italian security researcher, a
Monero contributor, and the author of this book. Finding
good resources and learning about cryptocurrencies can

be a daunting task. For new users, it can be especially challenging to
track down documentation written at an understandable technical
level. When I first started learning about Monero, I had to spend
a great deal of time seeking out and evaluating many different re-
sources on the topic.

I decided to write Mastering Monero to guide you along this jour-
ney, whether you're setting up your first wallet or curious about the
'under the hood' technical details. The first few chapters are written
for anybody curious about why and how to use Monero; they contain
easy-to-understand explanations and examples, alongside instruc-
tions for practical use. Later chapters progress into more advanced
topics, compiling information for developers who wish to build and
contribute to the Monero ecosystem.

My adventure into the world of cryptocurrencies began when I
learned about Bitcoin in January 2016, and I was always concerned
about the ramifications of its transparent public ledger. Since Bitcoin
and most other cryptocurrencies are built around openly-linked
addresses and coins with clear histories, transactions often inadver-
tently expose users' personal financial details. Every address balance
is public information, which allows anybody to research income,
spending habits, and amount of cryptocurrency wealth. This can

8

lead to undesirable consequences, such as price manipulation based
on wallet balance.

I thought that Bitcoin was the only cryptocurrency until a friend
introduced me to Monero in May 2017. I was blown away by its
beautiful new paradigm: a world where vulnerable details such
as account balances and transaction amounts are kept confidential
to protect both the sender and the receiver. With privacy features
implemented by default and always required, the entire Monero
blockchain is veiled; users do not even have the option to accidentally
send revealing transactions.

Recognizing the importance of this project, I began looking for ways
to contribute to the community. I quickly saw an opportunity to support
mass adoption by building payment gateways for online businesses,
so I spearheaded the Monero Integrations project. This open-source
codebase is designed around Monero's privacy-centric mentality:
no signup or third-party service is required, since funds are routed
directly to the recipient's wallet. The Monero community was very
supportive throughout this endeavor, and the entire project was
crowdfunded by donations through the Monero Forum Funding
System (FFS).

While working on the Monero Integrations project, I learned that
the lack of a comprehensive guide to Monero was an obstacle for end
users and prospective contributors. This need for a thorough guide
inspired me to write Mastering Monero as a universal resource for our
global community. I am grateful for the generous FFS support that
has made it possible to publish this document as a free eBook (and
physical book!) for the general public. Whether you read Mastering
Monero cover-to-cover or jump through sections pertinent to your

https://monerointegrations.com
https://forum.getmonero.org/22/completed-tasks/88414/monero-integrations-second-ffs
https://forum.getmonero.org/22/completed-tasks/88414/monero-integrations-second-ffs
https://forum.getmonero.org/6/ideas/89797/mastering-monero-ffs

9

questions, I hope you enjoy learning about Monero and the exciting
projects within the community.

How this resource is organized
The first two chapters of this book are friendly non-technical intro-
ductions to key topics and skills. For readers curious to learn more
about behind-the-scenes details, chapters 3 and 4 contain conceptual
non-mathematical explanations of Monero's privacy features and
blockchain. Later chapters dive into complex technical details for
understanding, developing, and integrating Monero.

The first chapter (Introduction to cryptocurrencies & Monero) is an
general-audience non-technical introduction covering key ideas
and concepts about blockchains and cryptocurrencies (appropriate
both for newcomers and current users wishing to read more about
Monero's principles). We'll cover the history and basics of crypto-
currencies, and describe how using blockchain technology resolves
several problems present in the traditional mainstream financial
systems, especially banking services. Unfortunately, there are priva-
cy weaknesses endemic to most cryptocurrencies - we'll discuss the
personal implications of these drawbacks, and learn how Monero
mitigates these risks and protects your sensitive financial information.

The second chapter (Getting started: receiving, storing and sending
Monero) is your handy guide for all the practical skills and tools that
you'll need to use Monero yourself! We'll explain some necessary
lingo, and learn about the 'pros and cons' of types of wallets. You'll
learn how to make your first wallet, and you can even use the Mas-
tering Monero example wallet for practice!

10

In the third chapter (How Monero works), we'll discuss Monero's
four main privacy technologies: RingCT, ring signatures, one-time
(stealth) addresses, and Kovri. These are friendly explanations with
no use of math or code, so you can learn conceptually how each
feature works, and what benefits they provide.

The fourth chapter (The Monero Network) conceptually describes
how Monero's network and miners processes transactions onto the
blockchain. We'll discuss miners' incentivization (block rewards +
fees), and the services that miners provide (confirming transaction
and securing the decentralized and trustless network). We'll also
introduce the “hot topic” of specialized mining equipment, and
describe the Monero community's relevant egalitarian philosophy
and active countermeasures that have been taken to resist ASICs.

While the preceding chapters have focused on learning how to
use and conceptualize Monero in practical and intuitive ways. The
remainder of the book will dive deeply into the internals of Monero,
its mathematics, and its code. If you choose to tackle these advanced
topics, you will truly be “mastering” Monero!

The fifth chapter (A Deep Dive into Monero & Cryptography) leads
a technical deep dive into the privacy technologies covered concep-
tually in chapter 3. This study moves pass the analogies, into the
actual mathematics and specifications of Monero's enhanced version
of the CryptoNote protocol.

The sixth chapter (Community and Contributing) contains infor-
mation for anybody that is interested in contributing their time and
skills to help the Monero community. Whatever your strengths, there

11

are opportunities to contribute - you could help with translations,
outreach, code development, applications, or in many other ways.

The seventh chapter (Monero integration for developers) discusses
payment option, and useful methods for conveying addresses through
OpenAlias (human-readable) and the Monero URI (machine-read-
able). Developers for merchant payment options, learn about gener-
ating simplified addresses through OpenAlias. Developers will learn
how to interact with the Monero blockchain via remote procedure
calls (RPC) to the Monero daemon, and a Python implementation
is included to teach how basic tasks are executed.

The eighth chapter (Wallet guide and troubleshooting tips) contains
miscellaneous information for setting up a graphical (GUI) or termi-
nal-based (CLI) wallet along with troubleshooting tips for common
problems.

Maria is purchasing a car from George, and in this chapter
we'll consider three different ways that she could pay
him: traditional banks, transparent cryptocurrencies (e.g.

Bitcoin), and Monero.

1.1 Payment through banks

Introduction to
cryptocurrencies & Monero

Chapter 1

Figure 1.1 - Maria sends money to George through the traditional banking system.

12

13

If Maria sends the money to George through the traditional banking
system, they trust two intermediate parties (their respective banks)
to symbolically move the funds for them.

There is no actual movement of physical bills or assets; both
banks simply edit their respective databases to show that the funds
have been transferred. When Maria submits the transaction to her
bank (whether by wire transfer, her bank's website, or an app), her
bank subtracts $2,500 from her account balance on their ledger,
then contacts George's bank and requests that they add $2,500 to
George's balance.

There are a few drawbacks and risks to this system, and it requires
total trust in the banks. Maria, George, and the banks must act on
faith that transactions are legitimate and that the ledgers are kept
honestly. This trust in the intermediate third parties poses a risk, since
a nefarious actor or the banks could “create” money by fraudulently
editing the ledger balances or transaction database.

Furthermore, Maria does not actually have possession of $3900,
only an IOU from her bank that she must trust is redeemable. She has
no way to audit her bank to verify whether they actually have $3900.

In fact, they may not hold that much, since most banks legally
operate on fractional reserve - meaning that their actual assets are
allowed to be significantly less than the total balance promised to
account owners.

Depending on how the funds were sent, it could take anywhere
from minutes to days before the $2,500 shows up in George's bank
account. Since George is not privy to the banks' ledgers or commu-
nications, the entire process is opaque and cannot be monitored.

14

Many people that have not personally experienced economic
disruption take functioning banks and the validity of their IOUs for
granted. Few individuals consider the unsettling ramifications of
handing their lifelong savings to opaque corporations, often putting
all their eggs in a single institutional basket. Losses can occur due to:

•	 negligence (the bank makes a mistake)

•	 financial issues (the bank overextends their assets or goes out
of business)

•	 malice and corruption (the bank or a rogue employee steals
your money)

•	 hostile third parties (the bank is robbed or a hacker thieves
electronic funds)

Thankfully, an emerging new blockchain technology is capable
of mitigating all of the above risks by creating a distributed ledger
that all parties can equally use, view, and verify. This remarkable
capability for strangers to agree on a shared document, which is called
decentralized consensus, has been revolutionized in the last decade.

It's easy to be confused about the terminology at first, especially
since most people are simultaneously introduced to several jargony
concepts. You can think about "blockchains" as a technology that al-
lows networks to establish "decentralized consensus" agreements.
By enabling strangers to safely share a ledger, it becomes possible
to build "cryptocurrencies" that function as digital cash. There are a
multitude of regular currencies (euros, dollars, yen, etc); analogously,
various teams have built many different cryptocurrencies (Monero,
Ethereum, Bitcoin, etc).

15

Figure 1.2 - An analogy showing parallels between various cryptocurrency
terms (blockchain, decentralized consensus, and cryptocurrencies) and words
related to common transportation.

16

1.2 Introduction to blockchains

Anybody can learn all about Monero and how its blockchain works
without having to understand the underlying mathematics and
cryptography (similar to how anybody can become internet-savvy
without first studying DNS servers and the IPv6 protocol). This chap-
ter focuses on the key concepts and vocabulary without digging
into all of the technical details - you can jump ahead to chapter 4
and chapter 5 if you want to dive into the cryptographic framework.

1.2.1 What is a blockchain?

The term blockchain refers to a particular method for securing records
in a database that all network users share. It is groundbreaking for
being a trustless system, where individuals retain full autonomy over
their funds, there is no central authority, and each participant can
easily verify and audit the system.

Anyone in the world is welcome to act as a network maintainer, and
each participant keeps the others honest by verifying the blockchain.
When users broadcast information to be placed on the blockchain,
network maintainers group these transmissions into blocks and use

Figure 1.3 - Every few minutes, the network adds another permanent block of
information onto the chain, securely linked to the previous block by its hash.

17

cryptographic tools to finalize the records and permanently link
them onto the blockchain.

Figure 1.4 - In a traditional centralized network (top) all of the users must con-
nect to designated machines maintained by a third party, shown by the central
hub of server racks. In a decentralized network (bottom) the users created an ad-
hoc web of interconnected machines. Monero uses this latter type of system with
no special centralized servers, instead employing a resilient peer-to-peer network
of volunteer nodes sharing new information with each other.

18

Once data is sealed onto the blockchain, it cannot be deleted,
moved, or altered in any way. ​The records are immutable and each
participant on the network has matching copy of the blockchain for
their own verification. Most cryptocurrency blockchains employ a
clever mining model that encourages network participation and keeps
all of the records honest and synchronized. These types of decentral-
ized systems are incredibly robust since there is no single server or
central database that can be maliciously attacked or manipulated.

These decentralized systems are also trustless since each participant
in the network maintains and verifies their own copy of the records,
instead of relying on any third party. Given that blockchains provide
a system for global tamperproof recordkeeping, they are extremely
well-suited for storing financial data. In fact, the first modern dis-
tributed blockchain debuted in 2008 as the mechanism underlying
the Bitcoin cryptocurrency.

On October 31st 2008, an anonymous individual or group known
as Satoshi Nakamoto published a whitepaper describing “Bitcoin: A
Peer-to-Peer Electronic Cash System.” This world-changing document

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

19

laid out the framework for the open-source decentralized crypto-
currency and the revolutionary blockchain technology that makes
it possible.

Figure 1.1 in the first section highlighted how sending money
through the traditional banking system requires multiple transactions,
separate ledgers, and trust in more than one bank. Figure 1.5 (below)
shows how Maria could send money to George by transferring 10.5
Bitcoin from her address (1BuUygisXY) to an address controlled by
George (1eK5FSywkp). This example references Bitcoin (BTC) for
convenience, however nearly all cryptocurrencies use this type of
public ledger and thus experience the following benefits and issues.

Figure 1.5 - Maria sends money to George using a cryptocurrency with a
transparent public blockchain, such as Bitcoin.

20

1.2.2 Blockchain benefits

A few of the blockchain benefits are immediately apparent:

•	 Simplicity (& speed): Maria's money is broadcast to George
in a single step to update a single ledger. Whereas bank
and wire transfers can take days or weeks, cryptocurrency
ledgers typically update in seconds or minutes (the transaction
confirmation time varies for different cryptocurrencies).

•	 No third-party risks: Maria and George rely on their own
cryptographically-secured and self-maintained system instead
of placing their money and trust in the hands of third parties.

•	 Pseudo-anonymity: Unlike the banks, cryptocurrency ledgers
never record real names such as “Maria” and “George” with
the accounts. In fact, personal information is never necessary for
generating an cryptocurrency wallet. George will access the funds
pseudonymously, using his key for the 1eK5FSywkp address
to which Maria broadcasted the money (from her account,
1BuUygisXY).

Bitcoin and the other cryptocurrencies that followed have ini-
tiated a financial revolution that is still unfolding. With these new
decentralized networks, anybody can personally store and globally
transfer funds at their own discretion. Prior to cryptocurrencies, it was
difficult to store large amounts of wealth securely without trusting
your savings to banks or credit unions. Likewise, transferring money
to another individual or business required reliance on third-party
payment processors for checks, wire transfers, or credit/debit cards.

Thanks to cryptocurrencies, for the first time, anybody can exer-
cise their basic financial rights without requiring access to a bank
and approval from external institutions! In mere moments, any

21

device (computer, phone, tablet) can be used to initialize a new
cryptocurrency wallet that is fully functional for receiving, storing,
and sending funds. Setting up a wallet does not require any kind
of identification, fees, or authorization, since the system identifies
users by addresses that look like random strings of numbers and
letters instead of personally identifiable details such as names, street
addresses, or phone numbers.

1.2.3 Blockchain drawbacks

Most cryptocurrencies are pseudo-anonymous, since their users are
identified by unintelligible strings of letters and numbers rather than
personal identifiers. When you receive a cryptocurrency payment, you
do not learn the sender's name; instead, you receive the funds from
an address such as: 1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa.

While this preserves privacy in some ways, it also exposes some
sensitive information. Recall, every participant in a decentralized
blockchain system can access a complete copy of the entire set of
records. In the context of cryptocurrencies, this ledger is used to
ascertain the account balance for any (e.g. Bitcoin) address.

On these shared transparent ledgers every account balance and
history is public! In fact, several helpful websites allow you to easily
search the blockchain for any address or transaction.

Suppose you run a shop, and one of your customers pays for a loaf
of bread from the Bitcoin address 3P3QsMVK89JBNqZQv5zMAKG-
8FK3kJM4rjt. You can instantly check on the blockchain and see
that this account has received more than 5,000 Bitcoins! Knowing that
your customer handled $50,000,000 recently, you might be inclined
to charge more in the future, or simply rob them now. This privacy

https://blockchain.info/address/3P3QsMVK89JBNqZQv5zMAKG8FK3kJM4rjt

22

issue presents a personal security risk.

In addition to knowing your customers' balances, you can also
see every transaction that they have received or sent: the amount, the
timestamp, and both participants' addresses. Analysis of transaction
activity and history can be used to profile your spending patterns,
income, savings, and with whom you interact.

A significant amount of your sensitive personal information can
be exposed if your pseudo-anonymous blockchain identity is linked
to your real-life identity (for example, during an online purchase or
while registering for a cryptocurrency exchange). Often the owner of
an account can be revealed with a little bit of research; for instance,
you might have already searched for the two Bitcoin addresses
listed above to learn that they belong to Satoshi Nakomoto and the
Pineapple Fund charity, respectively.

Several companies exist solely to track and deanonymize transpar-
ent blockchains. For example, Elliptic offers an interactive explorer
that shows the flow of funds between Satoshi, payment processors,

Figure 1.6 - Elliptic's blockchain analysis of Bitcoin flow in the early 2010's, from
the interactive Bitcoin Big Bang explorer.

https://www.elliptic.co/bigbang-v1.html
https://www.elliptic.co/bigbang-v1.html

23

exchanges, forums, marketplaces, gambling services, charities, known
individuals, and other services.

Figure 1.6 shows a screenshot detailing significant Bitcoin trans-
actions in the early 2010s, including connections between mining
pools, Mt. Gox, and the Silk Road marketplace.

Take a moment to consider the valuable sensitive information that
you generate each day: credit card transactions, every phrase that
you search, products you view or purchase, social media sites that
you interact with, etc... All of this information is routinely recorded
and monetized by your banks, payment processors, giant tech/data
industries, and governments.

This mass collection of your data results in centralization of your
personal and private information in vast troves of sensitive material
that are juicy targets for hackers and blackmarket resale. It is quite
probable that your personal details (such as name, address, email,
phone number, etc) are already in the public domain without your
knowledge, perhaps connected with your demographic and/or mar-
keting dossier.

Consider the recent Equifax, Target, Home Depot, Uber, and
Panera data breaches. In many cases, both personal and financial
information were compromised, putting individuals and their cards
at risk.

Accidental data breaches are not the only concern. Big data and
tech companies carefully record your activities online, so that they
can profile your preferences in order to provide better services. Often,
this is used for targeted marketing and ads; however, this data can
also be leveraged for more questionable uses such as manipulating

https://time.com/money/4933204/equifax-hack-credit-report-identity-theft/
https://www.huffingtonpost.com/2014/02/12/target-hack_n_4775640.html
https://www.cnet.com/news/home-depot-offers-19m-to-settle-customers-hacking-lawsuit/
https://www.uber.com/newsroom/2016-data-incident/
https://www.nbcnews.com/tech/security/panera-bread-s-website-exposed-customer-data-security-expert-says-n862381
https://www.nytimes.com/2014/06/30/technology/facebook-tinkers-with-users-emotions-in-news-feed-experiment-stirring-outcry.html

24

your feelings or your voting behavior.

Anything that a company tracks about you may end up stolen,
carelessly resold, or used unethically. You should exercise great
caution regarding your digital footprint, since information cannot
be “unleaked” after your personal details are exposed.

Right now, privacy is conspicuously absent from mainstream
economic and commercial systems. Traditional payment processors,
banks, and cryptocurrencies leave very clear trails that are used to
study, surveil, and profit from you. Once collected, you often have
no way to control or track the proliferation of your data, or know
of the privacy and personal security risks that arise from its sale to
unknown parties.

The only guaranteed way to exercise your right to financial pri-
vacy is to avoid revealing personal information in the first place! To
stay safe, we need a way to interact securely - where transactions
cannot be linked to your identity, your savings, or other transactions.
The Monero cryptocurrency is your best tool for taking all of these
matters into your own hands!

https://www.nytimes.com/2014/06/30/technology/facebook-tinkers-with-users-emotions-in-news-feed-experiment-stirring-outcry.html
https://www.motherjones.com/politics/2014/10/can-voting-facebook-button-improve-voter-turnout/

25

1.3 Introducing Monero

MONE RO (pronounced /mōnĕrō/, plural moneroj) is a leading
cryptocurrency with a focus on private and censorship-resistant
transactions. The openly verifiable nature of most cryptocurrencies
(such as Bitcoin and Ethereum) allows anybody in the world to track
your money. Furthermore, links between your financial records and
personal identity may jeopardize your safety.

To avoid these dangers, Monero uses powerful cryptographic
techniques to create a network that allows parties to interact with-
out revealing the sender, recipient, or transaction amounts. Like
other cryptocurrencies, Monero has a decentralized ledger that all
participants can download and verify for themselves.

However, a series of mathematical tricks are used to conceal all of
the sensitive details and stymie any blockchain tracking. Monero's
privacy features allow the network to assess the validity of a transac-
tion and determine whether or not the sender has a sufficient account
balance, without the actually knowing the transaction amount or
account balances! Nobody can view others' account balances, and
transactions do not reveal the source of the funds being transferred.

One of Monero's crucial defining features is its philosophy of
enforced privacy by default. Users are specifically prevented from

26

initializing transactions that are accidentally or intentionally insecure.
This provides Monero users with peace of mind since the network
will not accept a revealing transaction! Monero users reap all the
benefits of a decentralized trustless financial system, without risk-
ing the security and privacy downsides of a transparent blockchain.

Figure 1.7 (next page) shows how Maria pays George for the car,
using Monero. The process is functionally the same as the crypto-
currency transaction shown in figure 1.5, however the sensitive
information is cryptographically obscured. Information such as
account balances and transaction amounts are marked with “***”
in the diagram, since no outside observer can ascertain the values.
The mechanics behind these unique privacy features are discussed
in chapter 3 (conceptual) and chapter 5 (technical).

27

1.3.1 Principles of Monero

Monero is designed with the following principles in mind:

•	 Network decentralization: The Monero network and ledger are
distributed globally. There is no single server or database that can
be maliciously hacked, controlled, or censored. If one government
were to shut down Monero nodes in their country, or attempt to
limit who can send/receive Monero, the effort would be in vain!
The rest of the world will maintain the network and continue
processing transactions.

Figure 1.7 - Maria sends money to George using Monero. The ****s represent sen-
sitive information, such as addresses and balances, that are masked by Monero's
privacy features.

28

•	 Financial security: The Monero network is self-secured by
incorruptible cryptographic mechanisms, so there is no need
to trust a third party with responsibility over your funds and
transactions. Every single Monero participant can verify the
validity of the ledger themselves, so you do not even need to trust
the node operators! (You can learn more about the cryptographic
techniques that secure Monero in chapter 5.)

•	 Financial privacy: Most blockchain systems achieve strong
security at the expense of privacy. However, Monero prioritizes
providing total privacy with no security concessions. Transaction
amounts, sender identity, and recipient identity are all obfuscated
on the blockchain, so your Monero storage and spending
activities are not trackable.

•	 Fungibility: The term fungibility refers to assets whose units are
considered indistinguishable and interchangeable.. For example,
imagine that you let your neighbor borrow 1 kilogram of flour
for a cake. When they return flour the next week, of course it will
be 1 kilogram of flour from a different source (since they used
your original flour for baking). This is not a problem, since flour
is fungible. However, vehicles are not fungible; if you let your
neighbor borrow your car, you probably want the same one back!

In the case of Monero, its fungibility is a feature of its
sophisticated privacy practices; the obfuscated transaction
record obscures the history of all monero.. If you let your
friend borrow 1 Monero, they can return any 1 Monero, since
they're indistinguishable. This particular quality may seem
like a minor nuance; however, fungibility is crucially necessary
for most practical uses of any currency (see examples below).
This characteristic is absent from most cryptocurrencies, with
transparent ledgers and trackable histories.

29

1.3.2 Real-life “use cases” for Monero

This section talks about some of the difficulties and risks that arise
from using insecure cryptocurrencies. For simplicity, the exam-
ples refer to “Bitcoin” as the prototypical transparent-blockchain
currency. However, these drawbacks are present in essentially all
cryptocurrencies.

•	 Price manipulation: Sofia is the only mechanic in a small
town. One of her customers paid for an oil change with Bitcoin.
Sofia later looked up his address on the ledger and saw that
the customer's wallet contained enough Bitcoin for a new
Lamborghini. Next time he needed a repair, she doubled her
prices. If the customer had used Monero, Sofia would have been
unable view his balance or use such information to manipulate
prices.

•	 Financial surveillance: Oleg's parents send him some Bitcoin to
pay for textbooks, then continue to snoop on his Bitcoin address
and activity. A few months later, Oleg sends some leftover Bitcoin
to the public donation address for an organization that does not
align with his parents' political views. He does not realize that
they are still monitoring his Bitcoin activity until he receives a
furious email from his parents, berating him. If Oleg had used
Monero, his family would not have been upset due to prying
into his transaction activity.

•	 Supply chain privacy: Kyung-seok owns a small business
providing family catering services for local events. A large food
company uses blockchain tracing to identify most of his regular
clients. The corporation uses this list to contact Kyung-seok's
customers, offering similar deals for 5% less. If Kyung-seok's
business used Monero instead, its transaction history could
not have been exploited by rival businesses seeking to steal his
customers.

30

•	 Discrimination: Ramona finds her dream apartment,
conveniently close to her new job in a great neighborhood.
Every month, she promptly pays her rent in Bitcoin. However the
landlord notices that some of the payments track back to a legal
online casino. The landlord personally despises gambling, and
unexpectedly chooses to not renew Ramona's lease. If Ramona
paid rent with Monero instead, the landlord would not be able
to review its history and discriminate based on her legal source
of income.

•	 Transaction security/privacy: Sven sells a guitar to a stranger,
and gives the buyer a Bitcoin address from his long-term savings
wallet. The buyer checks the blockchain, sees the large sum
of money that Sven has saved up, and consequently robs him
at gunpoint. If Sven had instead given a Monero address for
payment, the buyer would not have been able to view Sven's
wealth.

•	 Tainted coins: Loki sells some of his artwork online to save up
for college. When he pays tuition, he is shocked to receive a
“payment INVALID” error from the school. Unbeknownst to
Loki, one of his paintings was purchased using some Bitcoin that
was stolen during an exchange hack the previous year. Since the
school rejects any payment from a blacklist of “tainted” Bitcoins,
they refuse to mark the bill “paid.” Loki is in an extremely
difficult position: the Bitcoin that he saved has already been
transferred out of his account, yet the tuition bill is still unpaid.
This entire situation would have been avoided if Loki sold his
paintings for Monero instead, since its fungibility precludes
tracking or blacklists.

These examples have shown how Monero’s privacy features
keep users safe from snooping family, tainted coins, and unethical
business practices. All cryptocurrencies are a relatively new tech-

31

nology, and there is no such thing as “perfect privacy.” If keeping
a particular payment secret is a matter of life and death, it may be
risky to use any cryptocurrency for that transaction.

1.3.3 Monero: open-source decentralized
community and software

Monero is an open-source project actively developed by cryptogra-
phy and distributed systems experts from all over the world. Many
of these developers freely donate their time to The Monero Project.
Others are funded by the Monero community so that they can focus
entirely on the project.

The decentralized nature of Monero's development team brings
several benefits over a consolidated corporation or organization.
The Monero Project is a living entity greater than any individual or
group. Since both the network and development team are spread
across the globe, it cannot be shut down by any single country.

The term open-source means that the source code (software blue-
prints) are made publicly available for anybody to inspect. The alter-
native is closed-source software, where developers only deliver the final
compiled product (binaries such as .exe files) that cannot be opened
and studied. If you use closed-source software, you are trusting the
developer and distributor. The problem is that even a developer with
the best intentions may make a mistake that hackers later discover
and exploit. Only use open-source cryptocurrency software that has
been audited by independent parties to verify absence of malicious
code, accidental mistakes, and implementation weaknesses.

32

The cryptocurrency community has embraced open-source soft-
ware from the very start: Bitcoin was released as a public white
paper and open-source community-built code, which stood in stark
contrast to the opaque and proprietary decision structure endemic
to fiat (government-backed) currencies. Of course, the open-source
philosophy has been around much longer than cryptocurrencies!
Over 25 years, more than 5,000 coders have contributed to the open-
source Linux kernel, which is widely considered to be one of the
most secure operating systems.

The trust and security benefits of open-source software are of key
importance for any cryptocurrency, so The Monero Project is entirely
open-source. The developers use GitHub for version control, which
allows anybody to easily review every single line of code proposed
to be added, removed, or modified. Over 240 developers have con-
tributed to, reviewed, and tested the Monero code, which drastically
lowers the likelihood that any errors have been overlooked. Devel-
opers can find more information about interacting with Monero's
codebase in chapters 6 and 7.

Development team transparency is very important for community
trust, especially for cryptocurrencies. Monero development discus-
sion occurs in open IRC channels, and the Monero Project website
hosts public archives of meeting logs.

1.3.4 History of Monero

In 2013 Nicolas van Saberhagen published the “CryptoNote” protocol,
which became the foundation for many coins, starting with Bytecoin.
Like Bitcoin's Satoshi Nakamoto, the creator of Bytecoin remained
anonymous and promoted their coin through a Bitcointalk thread.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/monero-project/monero
https://getmonero.org/community/hangouts/
https://getmonero.org
https://getmonero.org/blog/tags/dev%20diaries.html

33

Some aspects of Bytecoin appeared dubious under close scrutiny.
Bitcointalk member “thankful_for_today” investigated the emissions
curve and noted that approximately 82% of the coins had already
been emitted, so the circulating coin supply was potentially danger-
ously centralized.

Ultimately, this greedy premine undermined Bytecoin's credibility
and practicality. Thankfully, thankful_for_today recognized the value
in CryptoNote's features, and incorporated them into a new project
centered around a strong, community-driven development team.
The Monero cryptocurrency, spearheaded by thankful_for_today,
launched in April 2014. The coin was originally named “BitMonero,”
however the community quickly elected to shorten it to “Monero,”
which is the word for “coin” in the Esperanto language.

1.3.5 Ethical discussion

Monero was carefully engineered to provide characteristics like fun-
gibility and transaction privacy that are necessary for any currency
(crypto- or otherwise) to be feasible for general use. As discussed in
the section “Real-life 'use cases' for Monero,” there are significant
practical issues that arise with financial systems that do not protect
users' privacy.

The very features necessary to keep Monero safe for day-to-day
users and businesses are unfortunately also appealing to those wish-
ing to conceal illicit activity. Monero is not specifically designed to
facilitate illegal activity, which has plagued every currency since the
idea of money was conceived thousands of years ago. The scale of
illegal transactions conducted using cryptocurrencies is dwarfed by
the staggeringly-vast amount of criminal activity that occurs every

https://en.wikipedia.org/wiki/Esperanto

34

day denominated in fiat currencies like Euros, Rupees, Yen, or Dollars.

Monero mining is designed to be compatible with computers,
phones, tablets, and most web browsers; this allows anybody to easily
enter the mining ecosystem with no barriers from equipment costs.
Unfortunately, hackers have taken advantage of this accessibility to
create exploitative websites and software that secretly mine Monero
for the attacker. Nonconsensual mining is tantamount to theft of
resources, and the Monero community recently self-organized a
team of volunteers to freely assist victims. The Malware Response
Workgroup provides education, tools, and live support to combat
software that employs Monero for malicious mining and ransomware.

The creators of Mastering Monero are excited about the currency's
use for widespread personal, retail, and commercial applications.
We hope that our readers use Monero ethically and often! You can
discover online stores that accept Monero through Project Coral Reef.
There are several websites that make it easy to use your equipment
to philanthropically mine Monero to support various non-profits,
such as UNICEF Australia, BailBloc, and Change.org.

https://getmonero.org/2018/09/26/Introducing-the-Monero-Malware-Response-Workgroup-Website.html
https://getmonero.org/2018/09/26/Introducing-the-Monero-Malware-Response-Workgroup-Website.html
https://www.projectcoralreef.com/
https://www.thehopepage.org/
https://bailbloc.thenewinquiry.com/
https://theminingscreensaver.com/

35

The last chapter focused on WHY to use Monero; in this chapter
you will learn HOW to use Monero. You can master Monero
without needing to learn any of the complex cryptographic

or technical network details, so that extra information is saved for
later in the book. Chapter 2 will cover all the practical skills you'll
need to get started receiving, storing, and spending your moneroj.

The first part of this chapter covers key concepts and terminol-
ogy for Monero use, as general information that will apply to any
wallet or software. Toward the end of the chapter, you'll find handy
guides for carrying out these steps using the free official open-source
Monero command line interface (CLI) or graphical user interface
(GUI) software.

2.1 What is a wallet?

Before you obtain some moneroj, you must plan ahead for where
you will receive and store your funds. You will need a wallet to help
you store and spend your moneroj.Your current paper money (e.g.
euros or dollars) can be stored in many different styles of physical
wallets. Likewise, there are several different types of Monero wallets,
and you can always move some of your money from an old wallet
to a new one.

Wallets take care of the complicated cryptographic processes

Getting started: receiving,
storing and sending Monero

Chapter 2

36

for you, so you don't need to know any fancy mathematics to use
Monero. You will only need to manage a seed and your address(es),
and learn how to navigate the functionality of your chosen wallet.
Other details like public keys and private keys are managed behind-
the-scenes by your wallet, so they are not discussed until chapter 5.

Your Monero seed is a secret number that your wallet uses to locate
and spend your moneroj, though it is converted into a series of 12-
25+ words for convenience. This secret is like a treasure map to your
money on the blockchain, and anybody who learns your seed can
use their wallet to access and spend your moneroj. For this reason,
you must be extremely careful when you generate and store your
seed. Do not set up a wallet in a coffee shop, where other patrons
or cameras may see your secret. It is dangerous to store your seed
electronically (e.g. in a text file or email) since malicious software
or services may be able to obtain it, and run off with your moneroj.

Your seed is used to generate your address(es) for receiving
moneroj. Just like your postal address, you share your Monero ad-
dress with people who want to send you something. Most wallets
will show your address in two different formats - a written string of
numbers/letters, and a visual QR code. You can safely share either
of these when you wish to give someone one of your addresses so
that they can send you monero.

If your Monero wallet is physically damaged, you can simply
import your seed into a new wallet, and pick up right where you
left off! As long as you have a copy of your seed, you can always
access your funds. However, if you lose your seed, there is no way
to ever recover access to your moneroj. You may be familiar with
passwords, which can usually be reset by contacting an administra-
tor. Seeds are not like passwords - nobody else knows your secret,

37

and the network is unable to shift your moneroj to a new account if
you lose your seed.

Most software will prompt you to write down the seed when you
initialize a new wallet. However some apps skip this reminder, and
you must take the initiative to find the backup feature and write
down your seed. Be sure to do this immediately, or else a damaged
device will cause you to permanently lose your funds.

2.2 Selecting the best wallet(s) for your
needs

In this section, you'll learn about different types of wallets available
for storing your moneroj.

You probably store most of your local currency (e.g. euros or
dollars) in a bank or safe, and carry around a small amount in your
day-to-day physical wallet. Likewise, many people use two com-
plementary wallet types for their cryptocurrency: a convenient hot
wallet that holds small amounts for day-to-day use, complemented

Figure 2.1 - Wallets carry out all of the key functions for using Monero.

38

by a more secure cold wallet for long-term savings or large amounts.

There are various storage solutions, and they vary in terms of
convenience, privacy, and security. Your individual needs will de-
termine which type(s) of wallets are best for you. The varying wallet
types described below differ primarily in where the seed is stored.

2.2.1 Software and mobile wallets

Software wallets (on a desktop computer or mobile device) are con-
venient for storing and using Monero. Many Monero users have a
handy hot wallet on their phones, to pay for day-to-day purchases.
A good rule of thumb is to only walk around carrying as much
cryptocurrency as you would feel comfortable holding in regular
cash. Software wallets store the secret seed on your device, so your
moneroj could be stolen if you catch a virus or keylogger.

Figure 2.2.a - Monerujo (Android
Wallet)

Figure 2.2.b - Cake wallet (iOS
Wallet)

39

2.2.2 Hardware wallets

Hardware wallets are physical devices that can carry out sensitive
wallet functions, completely isolated from the connected phone or
computer. Hardware wallets have their own built-in screens, to show
you the seed and transaction details without ever sending them to
an external device!

While hardware wallets are less convenient than software wallets,
they are extremely secure! Because of how they store and protect
your seed, you can safely use a hardware wallet to send transactions
from a device that you suspect or know is compromised with ma-
licious software. The Monero community is currently developing
“Kastelo” - the first open-source cryptocurrency hardware wallet.

Figure 2.3 -Kastelo is an open-source hardware wallet for Monero

40

2.2.3 Paper wallets

Paper wallets provide an inexpensive way to stash moneroj that you
do not plan to move frequently. You simply print out a physical copy
of your public and secret information for safe storage. Since the secrets
from your Monero seed are saved only on paper, not digitally, you
do not have to worry about viruses or data leaks. However, paper
wallets are not convenient for frequent use, since you must transfer
the secrets to a digital device every time you wish to send moneroj.

Figure 2.4 - A paper wallet is a printed copy of your Monero keys. Make
sure nobody sees the secret information!

41

2.2.4 Web wallets

Web wallets are Monero accounts that you access through a web-
site hosted by some third party. These online wallets are extremely
convenient, however this comes at the expense of your security and
privacy. There are essentially two types of web wallets - the crucial
difference is whether or not you know the seed.

The first type of web wallet stores the money in their own ac-
counts and gives you a username and password to log in (note: this
includes your “wallets” on exchanges). Since you do not have the
seed yourself, you do not personally control your funds; you must
trust the service to hold your money for you. You should be extreme-
ly wary of storing moneroj in these types of web wallets, which are
essentially providing banking services. They might lose your funds
at any time, whether through accident or theft. If the website is shut
down, your username and password are useless - since you don't
have the seed yourself, your funds are gone.

The second type of web wallet instead leaves the seed and funds
in only your control. Well-designed web wallets, such as MyMonero,
use secure methods to access your funds without ever sending your
secret seed to the third-party server. You must enter your seed every
time you log in, because it is not known to the provider or stored
on your device. This type of web wallet is (relatively) safer, since
the third party is not holding your funds. They are only providing
a software interface for your browser. If the website for this type of
wallet becomes inaccessible, you can enter your seed into a different
wallet and fully recover your funds.

While web wallets are convenient, neither type is recommended

https://mymonero.com

42

for long-term storage or large amounts. Both types have security
downsides (trusting your funds to a third party, or frequently typ-
ing your seed into a web browser) and there are potential privacy
concessions in both cases.

Figure 2.5 - MyMonero Interface.

43

2.2.5 Cold wallets

The phrase cold wallet is an umbrella term that is used to refer to
paper wallets and other offline storage methods. For example, an
electronic cold wallet can be a phone or computer that is only used
for interacting with cryptocurrencies, and is disconnected from the
internet except when in use. The device can use any operating system;
the important part is deliberate implementation of strong security
practices (including a firewall, antivirus software, and extreme cau-
tion regarding accessing only trusted websites/software). The seed
is still on the computer, however you keep the device sequestered
from the rest of the world as much as possible.

Figure 2.6 - A cold wallet refers to a secured device, intended only for storing
and transacting with cryptocurrencies. A computer running the Monero com-
mand line interface is shown above, as an example.

44

2.2.6 Monero wallet links

Regardless of which type(s) of wallet you choose, be careful to only
download vetted software through proper channels. Phishing schemes
and scam wallets are numerous, so be sure to double-check that
you are installing legitimate software! If you enter your seed into a
malicious wallet, your moneroj will be gone before you even realize
your mistake.

This section contains links to several open-source wallets that are
developed and trusted by the Monero community.

LIGHTWEIGHT WALLETS:
•	 Monerujo - Android
•	 Cake Wallet - iOS
•	 Mymonero.com - Web Wallet, Desktop, Android and iOS

OFFICIAL SOFTWARE :
•	 Graphic User Interface (GUI) - Windows, Mac and Linux
•	 Command Line Interface (CLI) - Windows, Mac and Linux

2.2.7 Connecting to a remote node (optional)

You can reduce sync time and disk usage by connecting to a remote
node instead of storing the entire blockchain on your device. Most
mobile wallets, such as the lightweight apps listed above, are auto-
matically configured to connect to a default remote node. If you need
to manually direct your software to a remote node, you can use the
community resources at node.moneroworld.com (port 18089).

Nodes are computers that have downloaded the entire blockchain,
and assist other users by syncing their wallets and relaying their trans-

https://itunes.apple.com/us/app/cake-wallet-for-xmr-monero/id1334702542
https://Mymonero.com
https://downloads.getmonero.org/gui/win64
https://downloads.getmonero.org/gui/mac64
https://downloads.getmonero.org/gui/linux64
https://downloads.getmonero.org/cli/win64
https://downloads.getmonero.org/cli/mac64
https://downloads.getmonero.org/cli/linux64

45

actions. Running your own (local) node is best for privacy, and you
can choose to share your node publically if you wish to help secure
the network. Remote nodes are convenient, and allow you to begin
using Monero quickly, without downloading the entire blockchain.

Running a node is not the same as mining Monero. Mining is a
different resource-intensive process, not discussed until Chapter 4.
Once the blockchain is synced, running a local node is not heavy on
CPU or network resources.

2.3 Using Monero

This section explains what you need to know for sending and receiv-
ing Monero. All of the examples in this book use the following seed:

MASTERING MONERO DEMO SEED: lamb hexagon aces
acquire twang bluntly argue when unafraid
awning academy nail threaten sailor palace
selfish cadets click sickness juggled border
thumbs remedy ridges border

46

Figure 2.7 - Wallets use the secret seed to generate addresses for receiving
Monero.

47

You can import this seed yourself to practice generating addresses,
checking transaction history, and verifying payments. You can use
this seed to follow along with examples in the book, but do not send
your monero to it! Anybody else reading Mastering Monero will be
able to spend it!

2.3.1 Receiving Monero

To receive Monero, all you have to do is share your wallet address
with the person sending you moneroj. Most wallets will show your
address in two formats: an alphanumeric string that is easy to copy
& paste, and a QR code that is handy for scanning with a camera.
Here are examples of both formats, from the DEMO seed above:

This address that you share is never stored on the blockchain
(thanks to a Monero feature known as stealth addresses, which are dis-
cussed conceptually in chapter 3 and described technically in chapter
5). Monero also allows you to generate multiple subaddresses from
your single secret seed, so you can share many different addresses
that all deposit to the same wallet.

Each Monero account has a single primary address (starting with
a '4'). For convenience, you can generate an unlimited number of
subaddresses (starting with an '8'). Funds received by any of the ad-
dresses are routed to your wallet's main balance. You can learn more
about the how your wallet handles multiple addresses in Chapter 5.

Your address for receiving Monero can be represented as a text
string, or QR code. You can share whichever is more convenient.
In the example, we have 4BKjy1uVRTPiz4pHyaXXawb82Xp-
zLiowSDd8rEQJGqvN6AD6kWosLQ6VJXW9sghopxXgQSh1RT-
d54JdvvCRsXiF41xvfeW5.

48

Wallets may wait 10 - 20 minutes for confirmation before marking
funds as received and safe to spend (you can learn why in Chapter
4). This is a common security practice, and wallets usually show the
unconfirmed transaction during the waiting period. If your wallet is
waiting for a 0.06 XMR payment to confirm, you may see something
like the image below.

There is no need for concern when this occurs! Within less than
a half hour, the funds will confirm and transfer to your available
balance.

Monero supports the ability to share a view-only version of your
wallet, which can see all incoming transactions but cannot send or
view outgoing funds. This feature has many important uses: enabling
full transparency for charity donations, providing access to financial
records for authorized auditors, and creation of limited-access de-
vices to monitor incoming payments. Initializing a view-only wallet
involves sharing a secret view key, which is different from the secret
seed; this intermediate topic is covered in chapter 5.

2.3.2 Sending Monero

To send Monero, you simply enter or scan the recipient's address,
and type the amount that you wish to transfer. Press “send” and
your transaction will be initiated!

49

If you are sending moneroj to a business, they may also ask you
to include a payment ID to connect your payment to your order. If
you are sending moneroj to yourself or a friend, you can leave the
payment ID field blank. Some services use “integrated addresses”,
which include the payment ID and address in a single text string for
convenience and increased privacy.

In 2018, Monero added the ability for each wallet to generate a
vast number of subaddresses for receiving payments. Consequently,
payment IDs and integrated addresses are being used less frequently.
Instead of giving each customer the same address but different pay-
ment IDs, modern merchants simply give each customer a unique
subaddress (this system is more straightforward and has less room
for “user error”).

Anybody using the free OpenAlias system can provide a hu-
man-readable Monero address (e.g. “donate.getmonero.org”) instead
of the raw address string (44AFFq5k....). Sending to an OpenAlias
address is no different than sending to the raw address. However,
setting up a new OpenAlias address is a more technical task, covered
in chapter 7.

Your wallet will add a small fee, to compensate the network for
forwarding and processing your transaction. Your wallet will rec-
ommend an appropriate fee based on the current Monero network
load, your transaction's urgency, and a few other behind-the-scenes
considerations. You can learn more about how fees work and why
they are necessary to maintain the network in Chapter 4.

2.3.3 How to check proof of payment

Given Monero's anonymity, you might wonder how somebody

https://openalias.org

50

can prove that a payment was sent. Besides optional payment IDs,
Monero has a second feature to selectively reveal proof that funds
were sent. This is accomplished by sharing a transaction key that only
the true sender can generate.

Example

Suppose your friends Khan and Maria each owe you 0.06552376
XMR for a meal that you split. You only receive 1 payment, with the
information below:

Amount: 0.06552376 XMR
Transaction ID:
4b540773ddf9e819f0df47708f3d3c9f7f62933150b90ed-

c89103d36d42ca4b7

Received to (your) sub-address:
899Ao1NQtu4ezACgw1QKXK4QBf5s8a3WHHtAjFfPm3Nf-

71mAkREEgAuKzASXHt8E7vVJFKsQJuvApBfu21WY9WN97Put8M5

This is a real transaction received by the DEMO wallet on 20-Apr
2018. You can see some information through a blockchain explorer,
however the Monero sender is always unknown. Both Khan and
Maria claim that they sent the payment, so you ask each to provide
the transaction key.

Khan:
OutProofV1N4Y5pUJEnRACJyB5C3zK1zTqAihdn-

N8MfVZhEWfD13Z2N7Npt1uxa1EY7N7jnvuJF76tXU-

wKrakvZSxTj4Zux5SpavFb4X1jRcLAJ2b5hqviQPiS-

58j2qH53QL44CJEgHtY5

https://moneroexplorer.com/search?value=4b540773ddf9e819f0df47708f3d3c9f7f62933150b90edc89103d36d42ca4b7

51

Maria:
OutProofV1To53Qu2gegZbUevosKCTwrEdqiECgFyUygutX-

MEdhrHg1EtXMrFNaszWYFjdU4aXFZ2iPF8G8jzoDJzCoW5d-

sWvb4mVN65abAya3U47cGXs7WABrTzG5aPfV4YBANhwPgwD2

When you check both of their transaction keys, Maria's confirms
payment to your address and Khan's key returns “bad signature.”
You can practice this yourself using the above address and trans-
action keys!

2.4 Operational security

Figure 2.8 - Phishing attacks often use slightly-different URLs to trick users into
entering their seeds or passwords into an attacker's copy of the real site (for
example, www.\mymonera/.com instead of www.mymonero.com). Always
carefully inspect the URL, especially when following links.

52

Monero allows you to be your own bank, since nobody can control
your funds besides you! This grassroots financial empowerment is
one of the greatest benefits of cryptocurrencies. However, with great
power comes great responsibility! Keeping operational security
(OpSec) in mind is important for keeping yourself and your funds safe.

2.4.1 Never say how much Monero you own

Sayings like “loose lips sink ships” exist for a reason. When you
publicly disclose about how much Monero you have, you may inad-
vertently make yourself a target for scams or theft. This is especially
true in cases of online forums and social media.

Scammers and thieves prowl the internet looking for individuals
who have revealed exploitable information about themselves and
their wealth.

Most people know better than to post about the balance of their
bank account or retirement portfolio on social media. It is a security
risk, rude, and can make interpersonal relationships awkward when
wealth imbalances are involved. However, lots of people naively
declare how much Bitcoin or Monero they have bought.

Remember that cryptocurrency prices are volatile, and are known
to increase dramatically. A post stating “I just spent $50 on Bitcoin in
case it lasts” from 2012 may have seemed modest at the time, how-
ever that $50 (~10 BTC in 2012) was worth nearly a million dollars
by the end of 2017, less than 5 years later! Messages on the internet
can be hard to erase, so the best way to avoid this situation is never
posting in the first place.

53

Given the general interest in cryptocurrency investing, there is
lots of conversation about holdings and portfolio composition. You
should always talk in percentages rather than absolute amounts.
Figure (below) shows how to calculate your portfolio balances, so
you can discuss your saving strategies without revealing sensitive
information.

54

2.4.2 Keeping your seed safe

Your funds are only as safe as your seed, and there are two major
concerns to keep in mind: loss due to accident, and loss due to theft.

To avoid the loss due to accident, always make sure your seed is
backed up somewhere secure. Always ask yourself: “If my phone
dies or this website breaks, do I have a way to access my funds?”
You should consider keeping a second written copy of the seed in
a second safe location. You don't want to lose both your device and
your backup seed if your house floods or burns.

To avoid loss due to theft, never share your seed or keys with
anybody else. Anyone with access to your seed can steal 100% of
your funds, and Monero's privacy features will make it impossible
for you to determine where they went.

2.4.3 Transaction precautions

When sending any large transaction to a new person or exchange,
you should always initially test the address/service by sending a
smaller amount first. When sending any large transaction to a new
person or address, you should always send a tiny pilot transaction
first and wait for the recipient to confirm that it arrived. This is an
important habit to catch mistakes in advance, since there is no “undo”
button for cryptocurrencies.

With every cryptocurrency transaction, always double-check the
wallet addresses to make sure that it is correct. Even if you copy
& paste the address, visually confirm that it was pasted correctly
and in its entirety. Hackers have created malware that manipulates

55

cryptocurrency addresses in the clipboard (replacing the true recip-
ient's address with the attackers's). If you visually double-check the
address, you can catch this malware before you make a “donation”
to a hacker.

2.4.4 Exchange safety

Exchanges create their own wallets for you, and generally do not
share the seed with you. This is risky, since you have no way to
recover your money if the exchange is attacked, shut down, or oth-
erwise disappears. There is a famous saying “Not your keys? Not
your Bitcoin!” referring to wallets and services that retain control
over your keys, and thus your funds.

As mentioned in 2.4.2, you should always be asking yourself “if
this website disappears, do I have a way to access my funds?” A good
rule of thumb is to only keep your moneroj on an exchange if you
plan to trade it soon. Otherwise, move it to a wallet that you control.

2.5 Getting started for businesses

2.5.1 Monero is ideal for merchants

In this chapter, we covered all of the key skills for general Monero
use. This section introduces a few extra tools for helping merchants
integrate Monero into their systems and services. You can skip ahead
to the next chapter if you are not involved with incoming business
payments.

Merchants accepting payment in Monero benefit from fast, pri-
vate, and irreversible transactions. There are several tools designed

http://www.notyourkeysnotyourbitcoin.com
http://www.notyourkeysnotyourbitcoin.com

56

to ensure that accepting Monero is a “user-friendly” experience for
both online and brick-and-mortar businesses.

Of course, anybody can use the general skills from the last chapter
to set up a wallet and begin receiving Monero immediately. However
the tools mentioned in this chapter are designed to facilitate use by
businesses that wish to automate payment integration and processes
like issuing invoices and receipts.

2.5.2 Friendly tools for accepting Monero

The Monero Integrations payment gateway allows any online shop
to add a Monero payment option by simply installing any one of the
plugins designed for several popular content management systems.
The Monero Integrations solution was created (by the author of this
book) to be consistent with the Monero ethos: the entire project is
free, open source, decentralized, and private. Transactions are routed
directly to your wallet, so there are none of the privacy or security
concessions that arise when trusting a third party to process payments.

Kasisto was the first point of sale system that accepted Monero,
and is an open-source project requiring no third parties. The applica-
tion is intended for in-store use on a phone or tablet, and can accept
payments nearly instantly by detecting transactions before they have
even been mined. You can try a demo at the Kasisto GitHub.

Another payment option is GloBee, which allows merchants to
accept both cryptocurrency and credit card payments. GloBee is
a third-party company, which allows them to provide additional
functionality - for example, accepting many types of coins with in-
stant settlement into Monero, other cryptocurrencies, and even fiat
accounts (e.g. euros or dollars). This gives your business the option

https://www.monerointegrations.com/index.html
https://github.com/monero-integrations
https://github.com/amiuhle/kasisto
https://amiuhle.github.io/kasisto/
https://globee.com

57

to accept cryptocurrencies and be paid immediately in your local fiat
currency, eliminating exposure to price volatility risk.

If you want to dive into coding and build your own payment
options from scratch, you can learn all about creating the backend
in Chapter 7.

The first two chapters covered everything you need to know
about WHY to use Monero (Chapter 1) and HOW to use
Monero (Chapter 2). By now, you have learned everything

necessary to begin using Monero yourself!

The rest of this book contains extra details, for those wishing to
dive deeper into how Monero works “behind the scenes.” Chapters
3 and 4 describe underlying technologies such as Monero's privacy
features, the blockchain, and the mining process - focusing on
understanding the concepts, without digressing into the advanced
mathematics. Later chapters contain those nitty-gritty details for
developers and cryptography geeks.

3.1 Transaction and the ledger

To set the stage for understanding Monero's privacy technologies,
we will consider how moneroj are sent and received on the ledger.
For this chapter, we will focus on blockchain functionality - its role
as an inherently tamper-proof shared database that keeps a list of
Monero transactions. The details about blockchain security (mining,
hashes, etc) are another topic, reserved for Chapter 4.

When you set up a wallet for the first time, it generates a new
seed that you will keep secret and use to access your moneroj on the
blockchain. This initialization process is carried out on your device,
and can be executed entirely offline; nothing is broadcast to, or re-
corded by, the network during wallet generation.

How Monero works
Chapter 3

58

59

Behind the scenes, your wallet calculates two sets of keys from
your seed. Your private keys are a closely-guarded secret, since you
use them to prove your identity and access your moneroj. Your public
keys are, as the name implies, made known to other Monero users.
Public and private keys are generated together as sets, with particular
mathematical properties that create a special link between the keys.

To receive moneroj, you give your address (created from your
public keys) to the sender. When somebody (a customer, an exchange,
or a friend) sends you Monero, they will broadcast a transaction that
transfers some of their moneroj into a new entry on the ledger that
you (and only you) can unlock with your private keys.

In technical lingo, the output of their transaction is stored on the
blockchain for you to access and spend with your private keys,
at your leisure. This terminology can be a bit confusing, since the
cryptocurrency use of the word “output” has a different meaning
than its typical definition.

Each time you receive moneroj, you gain another output; each
time you spend moneroj, you use up one of your outputs and gen-
erate a new one for somebody else. In fact, all of the moneroj that
you “own” are simply outputs on the blockchain that your private
keys unlock. Until somebody sends you moneroj, there will not be
any outputs on the blockchain that are associated with, or accessible
by, your private keys.

When your wallet is scanning or syncing this usually means that
it is using your private keys to check all of the transactions and
outputs on the blockchain to identify relevant entries. Your wallet
balance is the total sum of these outputs that your private keys can
unlock and spend.

60

When you send moneroj from your wallet, you use up some of
your outputs as inputs to a transaction that you broadcast to the
network. Conceptually, the blockchain is simply a record of these
transactions, each consuming the sender's outputs as inputs, to
generate a new output for the recipient.

The process described above is slightly simplified, to convey the
crucial parts (private/public keys, transactions, inputs/outputs). The
following sections provide non-technical explanations of the key
concepts underlying Monero's suite of privacy features.

3.2 Privacy technology overview

The general principles and terminology introduced above are shared
by most cryptocurrencies. Monero provides enhanced functionality
and privacy through several unique cryptographic technologies that
shield the users and their activity from public visibility.
Figure 3.1 shows how these complementary features work together
to protect sensitive transaction details:

•	 RingCT conceals the transaction amount.

•	 Ring signatures​ protect the sender by obfuscating which output
was spent.

•	 Stealth address ensure that the recipient's address is not recorded
on the blockchain.

•	 Kovri breaks the link between your transactions and physical
location by obfuscating the broadcast origin and concealing
network signs of Monero activity.

61

3.2.1 Ring Confidential Transactions

RingCT is a cryptographic technology that conceals the amount of
moneroj being sent in any transaction. With most cryptocurrencies,
transaction amounts are sent in cleartext, visible to any observer.
RingCT keeps this sensitive information private by allowing the
sender to prove that they have enough moneroj for a transaction,
without revealing the value of that amount! This is possible thanks
to cryptographic commitments and range proofs.

When you send moneroj, you “commit” the amount in a private
way, revealing just enough information for the network to confirm
the legitimacy of the transaction, while not publicly disclosing the

Figure 3.1 - Monero's several privacy technologies work together to conceal all
sensitive information generated with a transaction.

62

amount itself. A valid commitment guarantees that the transaction
is not fraudulently creating or overspending moneroj.

Range proofs are another important mechanism in RingCT, as a
method to ensure that the committed amount is greater than zero, and
less than a certain number. This is necessary to prevent senders from
committing negative or impossibly-high amounts of moneroj. To-
gether, commitments and range proofs secure the supply of moneroj
against fraudulent manipulation and counterfeiting attempts.

Prior to RingCT, Monero transactions were partitioned into specific
denominations (for example, 12.5 XMR would be sent as 10 XMR
+ 2 XMR + 0.5 XMR) and the transaction amounts were visible to
outside observers. RingCT was activated in January 2017, and rapid
widespread adoption immediately followed. Within 1 month of its
activation, approximately 98% of new transactions were already
voluntarily using the RingCT protocol!

In keeping with Monero's policy of enforced privacy-by-default,
RingCT became mandatory for all Monero transactions after Sep-
tember 2017. To spend any old pre-RingCT outputs, they must first
be converted to RingCT outputs with masked amounts.

3.2.2 Stealth (one-time) addresses

All Monero transactions utilize stealth addresses to protect the privacy
of the recipient. To avoid recording the recipient's wallet address onto
the blockchain, each Monero transaction is instead sent to a unique
disposable one-time address. The recipient can access funds sent to
a stealth address, without exposing any links to their wallet's public
addresses or other transactions.

63

Figure 3.2 -A Monero sender's wallet generates a disposable one-time stealth
address from the recipient's public address. Only the stealth address will be
included in the transaction and blockchain.

64

To conceptualize the use of random one-time codes to protect the
recipient's identity, imagine that you wish to give a few books about
coping with a sensitive illness to your friend André. Unfortunately
you're about to leave town for a trip and André won't be around until
next week. Perhaps you could ask your friendly neighbor to tempo-
rarily hold onto the books and pass them forward to the recipient.

Your neighbor will need to verify that anybody attempting to claim
the books is actually the intended recipient. Since your friend is a
private person with a sensitive condition, it would be inappropriate
to tell your neighbor to check their ID for the name “André”. How
could you arrange the exchange while preserving André's privacy?
You could simply make up a one-time random code and tell your
neighbor to give the books to whoever presents that code (e.g. give
these books to the person who knows the phrase “PolarComboTan-
go357”). Your neighbor will be able to keep track of the books and
give them to André, without learning anything about their recipient.

Similar to the way you might use that random non-informative
code to keep your neighbor from learning about your books' recipient,
Monero uses a system of one-time codes to prevent the the network
from learning about Monero recipients! Instead of explicitly record-
ing the recipient's address on the blockchain (analogously, “give
the books to André”), funds are always sent to a one-time “stealth
address” (analogously, “give these books to the person who knows
the phrase PolarComboTango357”). The cryptographic techniques
that secure stealth addresses solely for the recipient are discussed in
chapter 5, however the salient points are detailed below.

How are these one-time addresses generated? Your Monero wal-
let's public addresses are 95-character strings, which incorporate two
public keys (the public view and public spend keys) mathematically

65

derived from your seed. When somebody sends you funds, they will
use the public keys in your address along with some random data to
generate a unique one-time public key. These one-time public keys
that are recorded in transactions on the blockchain are named stealth
addresses because it is impossible for the network or an outside ob-
server to connect these random codes back to the originating wallets.

Figure 3.3 - On a transparent blockchain, such as Bitcoin, all transactions to the
same public address can be easily linked and viewed. Monero's stealth addresses
are unlinkable and are never duplicated, so the recipient's financial activity is not
visible to other users and senders.

66

Note that subaddresses are not the same as stealth addresses. Sub-
addresses are reusable public wallet addresses that are not recorded
in the blockchain. Multiple transactions sent to a single subaddress
will all point to different and unlinkable stealth addresses.

Improved privacy by not recording wallet addresses on the block-
chain is a clear benefit of implementing stealth addresses. An even
bigger implication is that use of these unique one-time keys prevents
multiple payments to the same address from being linked together!

Suppose you create some public art and post an address for cryp-
tocurrency donations. If you use a coin with a transparent blockchain
(e.g. Bitcoin), then every incoming transaction to that address is
permanently recorded in searchable linkable form. Anybody can
use a blockchain explorer to see how many Bitcoin donations you
received, their amount, and whether or not you've moved the funds.
Every incoming Bitcoin transaction is indexed on the ledger by the
address that you shared publicly.

If you post a Monero address instead, your donations are not
exposed to public scrutiny. Each donor will generate a unique one-
time stealth address, and record that on the ledger. The public do-
nation address that you posted next to your project will never be
directly referenced in a transaction, and the stealth addresses do
not provide any information about the recipient. Since each donor
mixes in their own random information to create the stealth address
for their transaction, one donor cannot recognize a stealth address
generated by another.

All Monero transactions must use stealth addresses, to ensure
privacy for the entire network. Your wallet automatically creates
the stealth address from the public address when it generates the
transaction.

67

3.2.3 Ring signatures

Ring signatures are a Monero feature designed to protect a transac-
tion's sender by obfuscating the source of the moneroj being spent.
Before jumping into ring signatures, we'll introduce the concept of
digital signatures in general.

Digital signatures are a general cryptographic method for confirm-
ing the authenticity and source of data or a message. The signatures
can be checked against the public key to confirm the identity of the
signer, and verify that the signed message is complete and unmodi-
fied. If the signed data is changed by even a single character (whether
due to intentional tampering or accidental miscommunication) the
signature will be rendered invalid.

Varying implementations of digital signatures are a key component
of all cryptocurrencies. To spend one of your outputs, you compose a
message to the network describing the transaction, sign it with your
corresponding private key, then broadcast the result to the network.
Before executing the transaction, the network checks the validity of
the signature to verify that the message has not been altered, and/or
forged, by a third party that does not possess the correct private key.

With transparent cryptocurrencies (e.g. Bitcoin) each message
describing a transaction explicitly declares which outputs are being
spent. This is useful for easy bookkeeping, since the network simply
maintains a record of unspent transaction outputs (UTXOs) that are
considered as valid inputs for new transactions. If somebody attempts
to spend the same Bitcoin output twice, the fraudulent second trans-
action is promptly rejected, since the network knows that the owner
already spent that output (when they signed and broadcast the first

68

transaction). Unfortunately, this straightforward proof of ownership
is highly detrimental to privacy by definitively indicating the source
of funds, and indicating when a given output is spent.

Monero uses a different scheme, known as ring signatures. This
group-signing method allows one member to digitally sign the
message on behalf of the group, while mixing in the public keys
of the other members, so that it is unclear who actively signed the
message. It is possible to cryptographically verify that one of the ring
members signed the message, but impossible to determine which of
the members actually crafted the signature.

Ring signatures are used in Monero to blend the keys from mul-
tiple outputs on the blockchain, in order to obfuscate which output
is actually being spent. Suppose Maria wants to spend one of her
Monero outputs. Her wallet will semi-randomly select several other
past outputs on the blockchain (not belonging to Maria) and mix their
public keys into the ring signature as decoys. The network is able to
verify that one of the outputs is being spent, however the decoys and
true spender are cryptographically indistinguishable.

Ring signatures protect the sender in all transactions, since the
recipient and Monero network are unable to ascertain which ring
member is the true source of the funds. A significant consequence of
ring signatures is that an outside observer is unable to definitively
prove that an output has been spent! The fact that an output appears
in a ring signature is entirely inconclusive, since it is impossible to
distinguish whether it was truly being spent, or simply passively
employed as a decoy ring member.

Since it is impossible to tell whether a particular output has been
spent, you might be wondering what prevents an unscrupulous user

69

from trying to spend the same output twice? With one-output-one-
spend transparent blockchains (e.g. Bitcoin) this is a trivial task: any
output that has been cryptographically signed and transferred once
is marked as spent and cannot be used again. However, Monero out-
puts can appear in ring signatures before and after they have been
spent, so output reuse must be prevented by other means.

This is accomplished by utilizing key images that are generated
and recorded with each transaction, uniquely derived from the ac-
tual output being spent. The network cannot ascertain which ring
member is connected to the key image; however other participants
only need to check whether or not the key image has been used be-
fore. If a malicious user attempts to spend the same output twice, it
generates the same key image both times, and the network instantly
rejects the fraudulent second transaction. Thanks to key images,
the network can prevent output reuse, despite not knowing which
outputs are spent!

The Monero network originally did not mandate ring signatures,
which unfortunately allowed privacy-damaging zero-mixin transac-
tions with no decoys. These early transactions had the same structure
and weaknesses as transparent blockchains, by unequivocally iden-
tifying both the sender and receiver, along with revealing when the
output is spent. Starting in 2016, the network began requiring two
ring members for each signature, enforcing privacy-by-default for
the sender. This was raised to a minimum ring size of five plausible
signers in late 2017, and increased again to a minimum of seven
potential signers in early 2018.

Note that between 2016 and 2018, ring size policies were formu-
lated as a minimum number of mix-ins, and users were allowed to
create transactions with larger rings if they desired. On paper, one

70

might think that using more decoys in a transaction guarantees more
privacy. However, there is a practical issue to take into consideration
- when the vast majority of transactions use the minimum ring size,
larger custom ring sizes stand out as unusual, which is counterpro-
ductive for privacy.

This was addressed in the late 2018 network upgrade; instead of
specifying a minimum ring size, network policies now mandate a
fixed ring size. At the time of writing, all transactions must use ring
signatures with exactly eleven members. This number may increase in
the future, as research into statistical threat models and best privacy
practices continues to evolve.

Figure 3.4 - Each Monero transaction is authorized by a group “ring signature,”
to protect the privacy of the sender.

71

3.2.4 Kovri & Traffic Analysis

Any device connected to the internet is assigned an IP address as
an identifier to help route traffic to the correct user. However, this
IP address can easily be connected to a user's physical location and
identity.

The ability to link Monero activity and transactions to IP addresses
has several significant downsides. Some of the cryptographic mea-
sures described in the previous section to protect Monero users may
be partially circumvented if the IP addresses from node connection
logs are analyzed to identify Monero users.

It is worth considering the unfortunate scenarios that can arise
when Monero network activity is connected to physical location
and identity.

Since broadcasting to the Monero network reveals an IP address,
a node receiving a transaction may be able to identify the physical
location of the sender. While Monero's other privacy features make
it difficult to link transactions from blockchain data alone, surveilling
node(s) that observe multiple transactions originating from the same
IP address could infer that they may be connected.

In addition to these privacy concerns, exposed IP addresses also
enable potential censorship. A malicious node might choose to not
relay transactions from certain individuals or groups. Even worse,
the geographic information revealed by IP addresses might lead
adversaries pay a malicious visit to cryptocurrency users' doorsteps.

The connection between IP addresses and Monero activity is not

72

only a threat for the users broadcasting transactions. The network
traffic through nodes is currently visible to internet service providers
and other surveilling parties, which could put node owners at risk
if their government or internet service provider chooses to respond
negatively toward cryptocurrencies.

Cryptocurrency miners may also experience unfair treatment if
their IP addresses are connected to their network activity. Malicious
parties might seek attack certain miners by censoring their blocks,
perhaps due to some ideological disagreement, or to limit non-gov-
ernment or non-corporate mining.

Clearly, all parties in the Monero ecosystem benefit from the
decoupling of their network activity from their IP addresses (and
thus their physical location/identity). There are currently several
ways to achieve this type of privacy, if you are in a situation where
you must conceal your use of Monero on a monitored connection.

One option is a virtual private networks (VPN) to send your traffic
through an encrypted connection that your internet service provider
and government cannot surveil. This works by establishing a secure
tunnel between you and the VPN servers, so your traffic is mixed
with other users' data and broadcast from a different IP address.
Note that the service providing your VPN could be keeping logs, so
be sure to exercise due diligence and use a trustworthy company.

Another option is to use The Onion Router ("Tor") to route your
traffic through a private network of relay nodes. Tor was originally
developed by the United States Naval Research Laboratory, and
is used by journalists, intelligence agencies, and those who must
take extra steps to avoid surveillance or censorship. Tor is a free
decentralized open-source private network designed so that no

73

participants can identify the source of any particular broadcast. Tor
can be accessed through a dedicated browser, and users with strong
privacy needs can use a Linux distribution, such as Whonix, that
routes all traffic through Tor.

The Monero community has also supported the development
of Kovri, a privacy approach based on the decentralized Invisible
Internet Project (I2P) specifications. Kovri is being designed to use
encryption and sophisticated routing techniques to create private
network distributed across the internet, available for other appli-
cations as well.

Until Kovri or a similar feature is directly integrated into Monero,
any users with particular concerns about internet traffic analysis are
encouraged to use a Tor or a reliable VPN provider to keep their
connections and IP address concealed.

3.3 Concluding comments

Monero uses several unique privacy technologies to protect various
elements of the network and all parties in all transactions. RingCT
conceals the amount sent in each transaction. Ring signatures pro-
tect the sender by concealing the source of the funds, while stealth
addresses ensure that the recipient's address is not recorded on the
blockchain. Kovri is an upcoming routing technology that breaks
the link between your Monero activity, and your physical location/
identity.

Together, these features ensure that Monero users remain anony-
mous, and that funds are not trackable. By cryptographically elimi-

74

nating all the links used in analyzing transactions on the blockchain,
Monero achieves fungibility, which is a necessary characteristic of
practical currencies. Now that you have read this chapter, you can
understand how Monero protects the individuals described in the
use cases described in chapter 1.

75

Chapter 4

The Monero network

In this chapter, you'll learn the key concepts behind blockchain
technology and how Monero miners keep the ledger secure. We'll
begin by explaining the structure of blocks, the way that they're

linked into a tamper-proof chain, and how the miners use proof of
work to arrive at consensus on an agreed version of the ledger. On the
topic of miners, we'll discuss the source of new moneroj, and how
the coins are released into the ecosystem. Toward the end of the
chapter, we'll dip our toes into a few cryptography concepts (hashes
and nonces) to really grasp the actual process of mining.

4.1 The simplified anatomy of a block

The previous chapter discussed how transactions are constructed. In
summary, your wallet drafts a message with instructions to transfer
one of your outputs to a new recipient. Sensitive information in the
message (sender, receiver, amount) is cryptographically obscured,
before your wallet authorizes the message by digitally signing it
with your private key.

In this chapter, you'll learn how the transaction message is pro-
cessed to enact the actual transfer. When your wallet broadcasts
this message, the network temporarily stores the request in a list of
pending transactions known as the memory pool. The Monero miners
collect these unconfirmed transactions from the memory pool, and
bundle them together into blocks. A simplified block is shown on
next page:

76

Each block contains a set of transactions, a cryptographic link
to the previous block (called a hash), and a place for the miner to
include a special number that completes the block (called a nonce).

If you want to learn how hashes and nonces work, there is a
friendly introduction with examples toward the end of this chapter
(you can skip ahead to the last section of chapter 4, and read it now if
you're curious about the cryptography.) There are only two concepts
that you need to know in order to understand how these techniques
function to secure the blockchain:

1.	 The hash is a security feature proving that each block is directly
linked to an unaltered version of the previous block. If an
attacker tries to tamper with any point in the ledger, even the
smallest modification attempt will be blatantly obvious because
the hashes will raise a red flag on every subsequent block.

2.	 The nonce is a special string that completes the block and marks
it as prepared for the blockchain. It is extremely computationally
difficult to find a nonce that satisfies the requirements necessary
to finalize and seal a block. Miners spend most of their time and
energy searching for valid nonces. It is impossible to plan ahead

Figure 4.1 - Each sequentially-numbered block of transactions must inclu-
de both a nonce and a reference to the hash of the previous block.

77

for calculating the nonces, so the search must start from scratch
with each new block. Nonces are not mathematically meaningful;
only one-time strings of random characters.

4.2 Nodes are the network backbone

4.2.1 Nodes relay network data to peers

Until now, references to “the Monero network” have mostly glossed
over the details of its composition. How do your transactions actually
propagate across this nebulous “network” to miners and other users?
Thousands of Monero nodes scattered across the planet are connect-
ed to each other, quickly sharing news of transactions and blocks.

These nodes form a peer-to-peer network, enabling efficient and
resilient communication for Monero users. Running a node does not
require any special equipment or expertise - if you download and
begin installing the Monero software now, you can have your own
node running before you finish reading this chapter!

https://getmonero.org/downloads/

78

There are no “special” or “super” nodes in Monero's peer-to-
peer network; all nodes (including yours) are equal participants
working to share resources and the workload. Nodes are hosted on

Figure 4.2 - Monero uses a distributed peer-to-peer network, comprised of a web
of volunteer devices sharing new data with each other. Nodes retain a full copy
of the blockchain and create the backbone of the network. Since running a node
requires significant disk space, some devices (especially mobile wallets) instead
connect to a remote node to request information and broadcast transactions.

79

computers of all shapes and sizes - laptops, desktops, servers, and
even virtual machines.

4.2.2 Nodes store the blockchain

When a new node is initialized, it must first download the entire
blockchain and verify the cryptographic links, such as the hashes and
nonces. This initial sync may take a few hours, as the node builds its
local copy of the blockchain, while confirming the validity of each
transaction and block. Instead of downloading the blockchain over a
single connection to a central source, each node receives transmissions
from many peer nodes. Nodes do not need to identify or trust their
peers, since the validity of the data is confirmed cryptographically.

Any Monero wallet software (e.g. the Monero GUI, a phone app,
etc) must have access to a copy of the blockchain in order to carry
out key tasks like retrieving transaction history, calculating account
balances, and crafting transactions. A wallet cannot craft transactions
before communicating with a synchronized node, since the software
needs to find and tally the relevant unspent outputs. However, your
address can receive moneroj whether or not you are connected to
a synced node (it simply won't show up in your balance until the
wallet downloads & verifies that block).

4.2.3 “Local nodes” versus “remote nodes”

The process of locally storing/verifying the entire blockchain so that
your wallet can interact with your own copy of the ledger is referred
to as running a local node. When you use this type of setup, your wallet
only interacts with your personal copy of the blockchain. Running a
local node requires a fair amount of disk space (~60 GB at the time
of writing), which is not suitable for all devices, such as cell phones.

80

Thankfully, wallet software can be configured to use a remote node
instead of your own local node. This means that your wallet will
connect to somebody else's node and simply request information
about your outputs. Most mobile Monero wallets default to using
a remote node, in order to keep the app lightweight. The Monero
GUI and CLI wallets can be configured to use either a local node or
remote node.

There are no security risks in using a remote node; your seed and
keys are never revealed, so the remote node operator will not be able
to control your funds or decrypt any information that is protected
by Monero features such as RingCT (concealing transaction amount)
or stealth addresses (obfuscating recipient address).

There are some minor privacy concessions that come into play
when using remote nodes, since the node operator is aware of the
times and IP addresses from which your device broadcasts trans-
actions or connects for updates. The upcoming Kovri privacy tech-
nology will significantly mitigate these risks. If you use your own
local node, your wallet scans your personal copy of the blockchain
for your transaction history, instead of relying on a third party to
retrieve this information.

4.3 Miners create new blocks

4.3.1 Miners add new blocks onto the
longest chain

The miners collect pending transactions from the memory pool, ver-
ify their authenticity by checking that the cryptographic proofs and
signatures are valid, and check that the key image has not been used

81

before (see “3.2.3 Ring signatures,” to review why this is important).

To prepare a block, the miner drafts a list of transactions to be
included, along with the hash of the previous block to provide a
cryptographic link. Lastly, the miner labors to find a nonce that can
be used to complete the block.

At any given moment, there are thousands of miners all working
separately (or in teams, known as mining pools) to find a nonce that
completes the current block of transactions. As soon as a miner or
pool finds a nonce to finalize their block, they announce their version
to the rest of the network. Upon receiving this completed block, the
other miners and nodes append it to their copy of the blockchain,
increasing the chain's height by one block. Transactions referenced
by the new block are removed from the memory pool, and the other
miners discard their own (incomplete) work on that block to begin
preparing the next one.

4.3.2 A difficult task ensures stability and fairness

The global nature of the Monero ecosystem and unpredictable trans-
mission delays due to network latency occasionally cause momentary
splits in the blockchain, if two miners independently complete two
different versions of a block at the same height. Suppose a miner in
South America is the first to complete a block, but a different miner in
Europe finishes their own copy before receiving the broadcast from
South America. In this case, the western hemisphere may be tempo-
rarily using a different blockchain than the eastern hemisphere. For a
brief moment, there exist two competing Monero ledgers that might
have slight differences (depending on which pending transactions
each miner selected from the memory pool). One might think that
this would be a catastrophic occurrence!

82

Figure 4.3 - Miners compete to extend the chain with a new block.
(Top) The blockchain is at height “3” so each miner works on their version of
block “4”.
(Bottom) Block “4” was completed by the middle miner first, so their version
is added to the shared blockchain, and all miners switch to finding a nonce for
block “5”.

83

On the contrary, this situation is easily resolved by elegantly
imposing a simple rule: miners all agree to work on the mining
the next block in the longest chain. This is a key piece of Monero's
decentralized consensus protocol, and allows the Monero network to
nimbly reunite to a single chain after an accidental split. Instead of
trying to resolve the discrepant blocks immediately, the miners sim-
ply continue working on completing the next block for their version.

Within the next few minutes, one of the miners will solve a sub-
sequent block and add it to their chain. As soon as this occurs, their
version becomes the longest chain, so the other miners and nodes
quickly adopt that copy and discard the alternative orphaned block.
Any transactions that were only included the orphaned block re-
main in the memory pool for the main chain, and will be mined in
a subsequent block. By simply following the longest chain created
with the most effort, the network completely resolves any splits and
returns to consensus on a single universal ledger.

4.3.3 Monero “taxis” use a hard puzzle to ensure
fairness

Validating a set of transactions and listing them in a block is not
computationally difficult. The time-consuming task for the miner
is finding a nonce that allows them to complete the block. This is a
puzzle designed to be extremely challenging and solvable only by
brute force testing solutions; there is no way to shortcut the process
or mathematically narrow down the search for a valid nonce. Miners
simply pick random numbers and test whether they complete the
block, by trial and error.

The presence of this arbitrary obstacle may seem peculiar at first!

84

The miners carry out a crucial and computationally-easy role for the
network (validating transactions) but are required to carry out a use-
less difficult task (finding the nonce) in order to submit their results.

To understand the reasoning behind this, consider the hypothetical
Monero Taxicab Network with only a few vehicles, and many taxi
drivers that can temporarily utilize one of the cabs if they submit
an approved route. Throughout the day, potential riders call in
and request rides all over the city. All of the requests from riders
who have not been picked up are collected in a real-time “pool” of
pending rides.

Instead of a central taxi authority assigning each incoming ride to
a car or driver, each taxi driver looks at the pool and puts together
their own list of 5 - 10 trips that they could complete in the next 30
minutes. This part of route/ride planning is easy and fast for expe-
rienced taxi drivers! Once a driver puts together a list of trips that
they can include in their next “block” of rides, they complete a final
task described below, then submit their route to the Monero Taxicab
Network.

Figure 4.4 - In the first stage of preparing a ride plan, each driver looks at the
pool of pending rides and drafts up a route.

85

If the driver has proposed a valid route with real pending riders,
then the plan is approved! The riders included on the taxi driver's
plan are removed from the pending pool, the taxi driver checks out
a vehicle, and travelers are soon shuttled to their destinations. The
driver collects fare from each of the riders, and receives a cash bo-
nus from the Monero Taxicab Network for being the first to submit
a complete plan.

So far, this should seem fairly intuitive! Incomplete trips are listed
in a pool; when a taxi driver successfully submits an approved block
of trips, the riders are transported to their destinations and removed
from the pending pool.

However, the Monero Taxicab Network has a very peculiar rule:
in order for a driver to submit their plan for a block of rides to the
Monero Network, they must do some difficult useless task first.
Imagine that the driver must scramble all of the letters in the rid-
ers' destination addresses and use some of them to generate five
sentences (> 50 words total) that can say anything, but must have
correct grammar/spelling in the local language. A driver submitting

Figure 4.5 - After the drivers complete the (relatively) easy task of planning a
route, they must solve a difficult puzzle - in this analogy, finding a way to rear-
range letters from the addresses to create a sentence.

86

a planned route must include both the list of rides and the nonsense
(“nonce”) sentences that match the letters in the destinations, or else
their route will be automatically rejected. There are multiple valid
nonce phrases that can be constructed from most sets of letters (for
example {a,e,e,g,i,m,n,r,r,s,t,o,o} can be rearranged to form both “Rims
enrage too!” and “Monero is great!”), and the resulting sentences are
absolutely useless for anything besides submitting that set of rides
to the Monero Taxicab Network.

A property of this type of task, which will have parallels in the
Monero cryptocurrency, is that it is very hard to find a nonce, and
very easy to verify one. For this taxi scenario, is quite difficult to
rearrange a dozen addresses by hand into 50 words that form valid
sentences. However, it is trivial for somebody else to review the
nonce result and verify that it completes the block of rides. When a
driver submits their nonce in the format shown below, you can very
quickly confirm that “Apple jam is very bad” is a valid sentence, and
that the letters are properly constructed from the rider destinations.
This verification is nearly instantaneous, compared to the time it
took the driver to rearrange the letters and find several sentences.

A seasoned taxi driver would be able to plan the driving route
from the trip list in less than 60 seconds, however it will probably
take them a few minutes to rearrange the letters and find nonce

Figure 4.6 - Finding a nonce sentence by rearranging the addresses is tricky and
time-consuming. However, the validity of a submission is easy to verify by qui-
ckly checking that it only uses letters from the rides included in the route.

87

sentences by hand. In fact, most of their effort in preparing their
proposed block of rides will be spent on finding this useless nonce.

Imagine this process from a taxi driver's perspective, beginning
right after the last block was approved. You quickly create a route
that includes several trips from the list of pending rides. Then you
begin working furiously to rearrange letters from the destinations
into some kind of nonce sentence. For a few minutes, you and all
of the other taxi drivers are working on the same list of pending
rides, each trying to craft a long enough nonce with more than 50
words. Suddenly, a different driver submits a list of the rides along
with a completed nonce. All of the trips that you were working on
disappear from the pool! You must throw away your work on that
block (since the riders are already en route) and switch to a new set
of pending trips. The process to find a valid nonce for that set of
riders begins again from scratch, based on the new set of letters in
their destinations.

Why would the Monero Taxicab Network impose such a difficult
useless task upon their drivers? It is actually their surefire way to
ensure that customers are served fairly! Imagine that a few of the taxi
drivers behave unethically in some way, perhaps ignoring pending
rides called in from a certain part of town, or selecting only the riders
that are going to businesses that have bribed those unfair drivers.
Without the nonce requirement, these small groups or individual
malicious drivers might dominate the ride selection process for the
whole business by constantly submitting their (unfair or exclusion-
ary) routes as soon as a car becomes available. In this way, they
could systematically treat some groups of customers poorly, which
is absolutely antithetical to the core principles of the Monero Taxicab
Network, which is dedicated to serving all riders fairly.

88

The nonce task competition between many taxi drivers is crucial
to Monero's goal of ensuring that cars and rides are provided fairly.
Assuming that all of the taxi drivers can rearrange letters at roughly
the same speed as each other, it will be somewhat random which
driver lucks into a solution and is able to submit their block of plans
first. It is unlikely that any driver could be the first to submit multi-
ple block plans in a row (i.e. be the first to find nonce sentences for
several sequential blocks) since each driver is competing against,
and collectively outnumbered by, all of the other drivers.

Most of the multitude of potential drivers will be honest indi-
viduals, submitting fair ride block plans to keep the city running
smoothly. If there are a few malicious drivers who wish to submit
unfair plans, the nonce task prevents them from controlling the entire
system. Statistically, they will occasionally be the first to find the
nonce, and thus able to submit their exclusionary route plan for that
block. However, the rest of the drivers, most of whom are honest, will
immediately begin working on their fair blocks to propose for the
next set of rides! Due to the random nature of who lucks into finding
a nonce first, the next set of rides will probably be carried out by an
honest driver whose plan will incorporate the previously-excluded
trips. This system of imposing useless work to randomize which
drivers' routes are accepted allows the Monero Taxicab Network to
be sure that a minority of malicious drivers cannot block a user or
group from booking rides.

The Monero Taxicab Network thus has no central authority that
is responsible or liable for controlling ride activity and assignment.
Instead, this task is distributed to the individual drivers, employing
the useless nonce competition to randomly select which route pro-
posal is accepted. This statistically ensures that the cars are frequently
assigned to honest drivers, so the Monero Taxicab Network has an

89

excellent reputation for providing fair service to all customers.

By now you're probably wondering how this extended taxicab
metaphor is related to the cryptocurrency that this book is ostensibly
about! You might have figured out that the decentralized Monero
Taxicab Network is an overt analogy for the Monero cryptocurrency
network, which needs to provide fair global service without any
central authority.

Each trip corresponds to a Monero transaction, pending in the
memory pool until it is selected for a spot in a car/block. The taxi
drivers represent miners. Both carry out an easy important jobs (taxi
drivers plan routes; miners collect and validate transactions), yet are
forced to compete against other drivers/miners in a useless difficult
nonce task. This barrier randomizes who succeeds first - thus statis-
tically distributing most of the cars/blocks to honest drivers/miners.
Whichever taxi driver submits their route first is rewarded with a
bonus from the Monero Taxicab Company and fare from each of the
riders who obtained a spot. Likewise, miners are rewarded with a
commission (called the coinbase or block reward) for completing each
block, and they also collect fees from the transactions included in
the block.

4.3.4 Miners are paid for their service

Each time a miner successfully mines a block (i.e. is the first to find
a nonce that completes the next block on the longest chain) they are
paid two different ways.

1.	 First, the miner receives a reward for contributing a completed
block of validated transactions. This block reward is analogous to
the cash bonus that the taxi network paid drivers that submitted

90

completed routes. All miners, upon receiving and confirming the
solved block, add this freshly-minted coinbase to the address of
the miner who found the valid nonce first.

2.	 Secondly, the miner collects fees that were included with the
transactions. Monero users can increase the likelihood that a
miner includes their transaction sooner by including a larger fee.

It is a common misconception that miners are “finding” or “creat-
ing” coins. Actually, miners are simply validating transactions, and
are paid for their work with new coins. This introduction of new
moneroj is referred to as coin emission.

When Monero was launched, the coin emission rate was more than
30 XMR every 2 minutes. This reward will smoothly decrease until
it reaches 0.6 XMR per 2-minute block in 2022. Monero's continuous
decrease is designed to provide a more stable economic environment
for miners, compared to other cryptocurrencies' dramatic halving
events, when the block reward is abruptly substantially reduced.
After 2022, Monero's tail emission will stay constant, guaranteeing
that mining a block will always reward 0.6 XMR.

Many cryptocurrencies have a fixed cap on coin emission, with a
hard limit on maximum supply. Once the supply cap is reached, there
will be no new coins introduced for miners, who will be forced to
subsist entirely on fees. For example, in Bitcoin, this paradigm shift in
financial incentives will occur around 2140, when the supply reaches
21 million Bitcoins and ceases to increase any further. This approach
is often touted as a benefit to remain “deflationary,” however these
arguments are often based on conflating the concept of an inflating
monetary supply with a different use of the word “inflation” to
describe an undesirable decrease in spending power of a currency.

91

The annual supply increase from Monero's 0.6 XMR tail emis-
sion is less than 1% per year. Since the miners will always be able
to collect fees, the guaranteed coinbase payments provide greater
financial stability for the miners in the long run. This social contract
ensures that the miners remain incentivized to use their equipment
to secure the Monero network.

Figure 4.7 - A miner receives two types of payments each time they mine a block:
1) the fees included with each transaction, and 2) a block reward consisting of
freshly-minted moneroj.

92

4.4 Proof of Work systems

Now we'll step away from the taxi analogy and directly discuss
the systems in place to ensure fairness in Monero. This process of
coupling important network functions with the search for a useless
nonce is referred to as a Proof of Work system. Many cryptocurrencies
are built on PoW-based consensus, and there are differences among
various implementations with different characteristics. However,
they share a common theme of enforcing decentralization by requir-
ing validation to be submitted with a nonce. Sometimes the nonce
itself is referred to as the “proof of work,” referring to the piece of
data that was hard to find/create and easy to verify, such as the taxi
drivers' anagrams.

Miners measure how quickly they can work toward mining blocks
in “hashes per second”, abbreviated H/s. Each miner can measure
their hashrate, which varies depending on the equipment that they
are using to mine. The “network hashrate” refers to the total hashrate
of all the miners working on preparing blocks.

4.4.1 Benefits

4.4.1.1 Censorship resistance

In PoW systems, the nonce-finding competition described above ran-
domizes which miner's version is accepted as the latest block on the
longest chain. As mentioned in the taxi analogy, the PoW framework
prevents effective censorship. Some malicious miner in the Monero
network may try to provide preferential treatment or exclude certain
transactions in the memory pool, however an honest Monero miner
will simply include those transactions in the next block.

93

4.4.1.2 Double-spend attack prevention

There is another blockchain challenge solved by PoW systems that
was not included in the taxi analogy. Specifically, a malicious miner
might try to double spend an output. This refers to an attack where
the miner creates alternative blocks to undo their past transactions
and steal back the money for themselves. The attack would have to
proceed in this manner:

•	 Malicious miner Martin broadcasts a transaction sending some
of his moneroj to victim “Valerie”.

•	 When the “Martin >> Valerie” transaction is mined onto the
blockchain, Valerie believes she has been paid.

•	 Martin takes whatever he was buying from Valerie...
•	 ... then Martin mines a different version of the block that

originally contained the Martin >> Valerie transaction.
•	 In Martin's alternative version, the transaction to Valerie doesn't

exist! Instead, his second version contains a transaction that sends
that moneroj to one of his wallets (Martin >> Martin), instead of
Valerie's.

•	 If Martin can quickly mine enough blocks to make his chain
the longest, then the network will accept his alternate reality.
In practice, the infeasibility of this step prevents double-spend
attacks from occurring.

•	 Since the key image for Martin's output appears on the chain
(now associated with the transaction to himself), the network
will no longer accept the “Martin >> Valerie” transaction as valid
since the key image associated with that output is already spent.

At this point, Martin has left with whatever he bought from Valerie
and has also stolen back the moneroj that he initially used to pay her.

Thankfully, PoW systems prevent an attacker from sustaining this
type of double-spend attack, by limiting the speed with which they

94

can generate blocks. Recall that miners will always follow the longest
blockchain, so the malicious miner would have to change the block
with the previous transaction then re-mine every block afterward,
fast enough to overtake the length of the main chain. Since the ma-
licious miner will be working alone to generate the altered blocks,
against the hashrate of the entire rest of the network maintaining the
original ledger, the attacker will be unable to catch up. This type of
attack could only feasibly succeed if the malicious miner has as much
computing power as the entire rest of the network combined. For
this reason, the term 51% attack is often used to indicate that some
sort of malicious activity would require majority hashrate.

Figure 4.8.a - The dishonest miner at the bottom attempts a double-spend attack
by creating a different version of an already-mined block.

95

A cryptocurrency with more miners and a greater total network
hashrate will be more difficult to attack in this way, since the mali-
cious miner must have more computing power than the rest of the
global network. Increasing the total hashrate by including more
miners helps to secure the network against attacks.

4.4.2 The “difficulty” adjusts time between blocks

The Monero network aims to add a new block onto the chain approx-
imately every two minutes. With each mined block, some transac-
tions are moved from the pending memory pool onto the confirmed
blockchain. If the average blocktime becomes too long, transactions
will be too slow to confirm. If the average blocktime is too short,
then the network could get out of sync more often.

The network influences how quickly blocks are mined by adjusting
the difficulty of the nonce puzzle. As more miners join the network
over time, their collective guessing power (hashrate) results in blocks

Figure 4.8.b - All of the honest miners working together produce blocks faster
than the malicious miner, so the attacker's chain with the alternative transaction is
discarded.

96

being completed more frequently (conceptually: if you double the
number of people searching for something, the group will probably
find it in half the time). This would statistically cause miners to find
blocks faster than the target blocktime of 2 minutes. To compensate
for this, the difficulty of the puzzle is increased, meaning that it
takes longer to find a nonce that matches the arbitrary requirements.
Likewise, the difficulty can be adjusted to be easier if mining power
decreases, causing blocks to be completed too infrequently.

In the taxi network analogy from the previous section, the diffi-
culty of the letter rearrangement task could be similarly arbitrarily
adjusted by requiring more or fewer words in the nonce sentences.
If 20% of the taxi drivers (miners) did not participate one day, then
it would take longer on average for route plan blocks (completed
with nonces) to be submitted, so some cars would be idling with
no driver. To correct this, the taxi drivers would agree to lower the
nonce requirements from 50 words to 40 words. This would put the
drivers back in sync with the availability of cars.

Difficulty increases proportionally with total network hashrate
to keep the flow of blocks constant.

4.4.3 The CryptoNight algorithm

Monero uses a variation of the CryptoNight PoW algorithm, which
is significantly different than the systems used by most other cryp-
tocurrencies. One of Monero's defining features is its use of a PoW
function that is difficult to optimize for specialized mining equipment.

 In most contexts, 'optimization' is a good thing, so you might be
surprised that Monero's PoW algorithm intentionally stymies acceler-
ating mining speeds. This is because the ability to create overpowered

97

mining equipment can lead to a dangerous centralization of miners.
These risks are perfectly illustrated in the history of Bitcoin mining.

4.4.3.1 Context: The history of Bitcoin mining

When cryptocurrencies entered the scene with Bitcoin's appearance
in 2009, mining occurred exclusively on computer CPUs. Since the
network mining difficulty adjusts to the current total hashrate, CPU
mining was adequately profitable in the early days. CPU miners
have Bitcoin hashing power on the order of 1,000,000 H/s, written
as 1 MH/s for convenience.

Soon, graphics cards were repurposed for mining cryptocurrencies.
GPUs are able to attack the mining problem orders of magnitude
faster, around 100 MH/s. Since the network difficulty adjusted based
on the GPU miners, the CPU miners could not compete (i.e. mining
rewards were insufficient to pay for the equipment and electricity
costs).

Next, application-specific integrated circuits (ASICs) were built
for the sole purpose of mining Bitcoin. These special devices are quite
expensive, and mine many thousands of times faster than GPUs -
more than 1,000,000 MH/s. By now, the Bitcoin network difficulty
has increased to accommodate the ASICs, consequently pushing the
CPU and GPU miners out of business.

Bitcoin was initially launched with the vision that anybody in the
world with a computer could begin mining to secure the network
and obtain some bitcoins as a reward. Unfortunately, the creation
and proliferation of ASICs very effectively ended this dream. If you
wish to begin mining Bitcoin now, you will have to obtain an ASIC
for hundreds or thousands of Euros.

98

This ASIC takeover put the vast majority of Bitcoin miners out
of business. The network began its existence secured by scores of
computer geeks scattered across the globe, all participating on their
personal computers and graphics cards. Sadly, this true decentral-
ization of Bitcoin is a bygone era. Now the network is dominated
by several large corporations with massive ASIC farms, who have
effectively become the Bitcoin backbone.

4.4.3.2 ASICs enable dangerous centralization

Since many of the main cryptocurrencies are dominated by ASIC
miners, it is worth giving consideration to the topic and its risks.
Centralization occurs in two forms: ASICs are only produced by a few
companies (centralization of manufacturing) and subsequent mining
tends to be limited to a few large farms (centralization of mining).

Centralization of ASIC manufacturing and mining to a few large
corporations allows hackers, attackers, and governments to exert
disproportionately large influence over the network and its opera-
tion. This begins to nullify many of the benefits of decentralization.
For example:

•	 Universal access to mining flourished in the days of CPU
and GPU mining, which uses mostly unregulated general-
purpose hardware. However, mining now requires specialized
hardware, which is at much greater risk of targed regulation
and control. It is possible that some government may
impose bans or require licenses to manufacture/own ASICs.

•	 Censorship resistance is weakened if the majority of Monero's
hash power is controlled by large mining farms that can be
pressured into confirming or censoring certain transactions.

99

It would be difficult to exert this influence over a global
collection of ameteur miners, and much easier to impose
this kind of activity on centralized mining corporations.

•	 Network resilience may be catastrophically undermined if a
malicious manufacturer (or one that is following government
orders) includes an secret ASIC killswitch to remotely control or
shut down their mining equipment. This creates a single point
of failure, whose activation would instantly kill most of the
network hashrate. This would plunge the network into a sudden
vulnerable state with dramatically lessened hashrate to secure
the currency. This risk is much higher if a small number of ASIC
manufacters control the majority of production.

The ASIC takeover of Bitcoin is complete. While there are still
some small-time miners with ASICS working in pools, large mining
farms dominate the network hashrate. Concerningly, the majority
of Bitcoin ASICs are designed, manufactured, and shipped by a
single manufacturer - in stark contrast to the Bitcoin's early days,
when miners used every brand, model, and flavor of CPU and GPU
to mine. The prevalence of ASICs would be much less risky if there
was a diverse and competitive ASIC market.

4.4.3.3 Monero actively resists ASICs

Due to underlying egalitarian principles, the Monero community
does not approve of ASICs and their inevitable centralization of min-
ing power. While the “CPU-hard” hash algorithm (SHA-256) used
by Bitcoin is amenable to ASIC optimization, Monero deters ASIC
development by using a “memory-hard” algorithm (CryptoNight)
that is difficult to accelerate.

Consequently, CPU and GPU mining are both feasible for Monero,
even in 2018. There are currently billions of existing devices (any

https://getmonero.org/2018/02/11/PoW-change-and-key-reuse.html
https://getmonero.org/2018/02/11/PoW-change-and-key-reuse.html
https://cryptonote.org/whitepaper.pdf

100

modern x86 CPU and many GPUs) that are capable of mining Monero,
so the process is accessible to any internet-connected individual. In
fact, it is even possible to mine Monero in a web browser from any
phone or computer!

In early March 2018, the Monero community was shocked to re-
alize that CryptoNight ASICs had been secretly produced and were
mining Monero! These devices purported to mine Monero 25 times
faster than the leading GPUs, and retrospective hashrate analysis
suggests that they accounted for nearly half of the Monero network
hashrate in late 2017 and early 2018.

Since the CryptoNight algorithm was designed as a memory-hard
function specifically to “close the gap between CPU (majority) and
GPU/FPGA/ASIC (minority) miners,” the existence of these ASICs
was an unexpected discovery. While the CryptoNote authors observe
that, “It is appropriate that some users can have a certain advantage
over others,” they propose that “their investments should grow
at least linearly with the power.” Naturally, a newer computer
or a nicer graphics card will mine more efficiently than older equip-
ment, but ASICs create an extremely disproportionate distribution
of hashrate.

The Monero community reacted quickly, proactively taking steps
to mitigate ASIC mining before the existence of the devices was even
fully confirmed. The spring 2018 Monero routine upgrade included
a minor tweak to the CryptoNight algorithm, designed to affect
ASICs differently than GPU/CPU miners. This slight variation did
not change the difficulty or behavior of the algorithm, so the CPU/
GPU miners were able to easily adjust to the new variant when they
upgraded with the network.

101

ASICs, on the other hand, are fundamentally incapable of adapt-
ing to new (minor or major) variations. One can think of ASICs as
workers that are trained to do one task extremely quickly, but cannot
learn to do anything else. The algorithm to be executed is physically
etched into the ASIC circuits, so they cannot be reprogrammed or
repurposed.

When the minor CryptoNote tweak was implemented at block
1546000, the ASICs became instantly incompatible with the network,
and approximately half of the total hashrate vanished. Since the ASICs
were unable to adjust to process blocks by a modified algorithm, any
blocks they produce are now immediately rejected by the Monero
network as invalid.

For the time being, it appears that the Monero network has suc-
cessfully mitigated the unexpected ASIC threat. To permanently
discourage ASICs, Monero now slightly changes the mining algorithm
at each network update. Since Monero carries out routine hard forks
every 6 months, this should permanently disincentivize attempts to
produce Monero ASICs, since each expensive and lengthy redesign
would be promptly rendered obsolete.

4.4.4 Brief note on PoW alternatives

There are alternative systems for maintaining fairness besides proof
of work; examples include proof of stake, proof of space, proof of
bandwidth, and even hybrids between multiple types. Each system
has its own strengths and drawbacks. PoW is currently the most
widely used and field-tested consensus mechanism, and is currently
the only system utilized by Monero.

102

Figure 4.9 -Visualization of differences between the Bitcoin (blue) and Monero
(red) monetary supply policies. The dashed red vertical line shows when Monero
transitions to a fixed tail emission in 2022.

The top panel shows the coin emission rate (per 10 minutes, to take into account
the different block times). Bitcoin reduces coinbase amounts through 'halving
events, whereas Monero smoothly decreases the block reward until tail emission
activates.

The bottom panel shows the total coin supply. The Bitcoin coin supply asympto-
tically approaches 21 million BTC in 2140, while the Monero supply increases at a
fixed rate.

103

4.5 Cryptographic concepts for proof of
work

Throughout this chapter, we've focused on the functionality of hashes
and nonces, describing them primarily through analogies. If you
want to learn how they really work, the remainder of the chapter
introduces the actual cryptographic principles.

4.5.1 Hashes (general concept)

Hash functions are a cryptographic tool that can digest any input
data, and produce a unique fingerprint output. These algorithms
are designed so that any alteration to the input, even very minor
changes, will result in an entirely different output. The term “hash”
can be used to refer to both the function itself and its output for a
particular input.

Adding, removing, or changing even a single character will re-
sult in a totally different hash. Consider the message “Please send
50 euros to Jen.” We can run the string through one of these
algorithms to produce its hash a2d2a9059ed8d323 The below
table shows how the hash output changes dramatically with any
modification of the input:

Input Output hash Comment
Please send 50 EUR
to Jen.

a2d2a9059ed8d323 True message

Please send 500 EUR
to Jen.

05cbdd8dd96718ac Added an extra '0'
to amount

Please send 60 EUR
to Jen.

f5087a90b63b1777 Changed '5' to '6'

104

Input Output hash Comment
Please send 50 EUR
to J​o​n.

ffd424b7077a3c58 Changed recipient
to 'Jon'

Please send 50 EUR
to Jen.

a2d2a9059ed8d323 Same input = same
output!

the example output here is the first 16 characters of each input's SHA-256 hash
$ echo {input} | sha256sum | cut -c1-16

Hash functions are heavily utilized in many cryptocurrency se-
curity features. Cryptographic hash functions are engineered to be
collision-resistant, which means that it is hard to find two input mes-
sages that collide to produce the same output digest. This is central
to the immutability (tamperproof nature) of the blockchain, since
any attempts to change data in a past block will result in an entirely
different hash output for that and all subsequent blocks.

This notion of an expanding append-only database with each
group of entries cryptographically secured by hashes to the previous
block is a key concept behind the blockchain revolution.

4.5.2 Nonces (general concept)

The term nonce refers to a puzzle that is not inherently physically/
mathematically meaningful. For example, consider the following
“fill-in-the-blank” questions that a teacher might give their students:

•	 Puzzle A) The Esperanto word for “c___” inspired the name
“Monero”. Acceptable answer: “coin”

•	 Puzzle B) 1 kilogram is equal to “_____” grams.
Acceptable answer: 1000

105

•	 Puzzle C) This 3-digit prime number “3___” does not repeat any
digits. Acceptable nonces: any of {307, 317, 347, 349, 359, etc…}

•	 Puzzle D) This 5-digit prime number “7___” does not repeat any
digits. Acceptable nonces: any of {71263, 72169, 73609, 74869,
etc…}

Puzzle A and B are both meaningful, and each have one correct an-
swer (A: “coin” B: “1000”) that the student will want to remember for
future problems. Thus, these answers are not considered “nonces”.

However, puzzles C and D are both “busy work” tasks that are
hard to solve, and do not contribute insight to any real problem.
There are multiple solutions that all satisfy the nonce requirement;
for question C, the answer “359” is equally as valid as “307.”

A student that spends an hour testing various numbers to come up
with the answer “359” for puzzle C has to start the search for a valid
nonce from scratch upon encountering each variation on the puzzle,
e.g. “This 3-digit prime number “6___” does not repeat any digits.”

If you only had a pencil and paper (or even with a calculator),
would you rather solve puzzle C or puzzle D? Probably puzzle C,
since you're likely to find a valid 3-digit answer faster than a valid
5-digit answer. You can see how the difficulty of the problem can
be arbitrarily adjusted by changing how many digits are required.

4.6 PoW concept summary

Cryptocurrencies use the hash of each block to ensure that its contents
have not been changed, since modifying a single character would be
instantly obvious due to the radically-different hash (which propa-

106

gates through subsequent blocks). The hash of a block includes all
of its contents: transactions, headers, the hash of the previous block,
and a nonce field.

To work on completing a block, the miners must randomly guess
at values for the nonce, attempting to find one that causes the hash
of the entire block to produce an output below a certain threshold,
which is determined by the current network difficulty. Since it is
impossible to predict how changing the inputs to a hash function
will affect its outputs, the miners must brute force random nonces
by trial and error until they find one that produces an output hash
that satisfies the current network difficulty.

The network raises or lowers this threshold to influence the mining
difficulty, in order to maintain a 2-minute block time independent
of changes in the total hashrate.

107

A deep dive into Monero &
cryptography

Chapter 5

Since long before the birth of computers, mathematics and
cryptography have been at the center of communication and
information exchange. While simple ciphers have been around

since Caesar's time, modern cryptography was born during the World
Wars for encrypting important and confidential messages. Initially,
governments and militaries funded classified cryptography research
to identify protocols for protecting state secrets.

Now, cryptography is no longer limited to spies and militaries; it
forms the backbone of communication and security in the internet
era, and is widely studied by academic and industry researchers
scattered across the globe.

Today, cryptography is a ubiquitous behind-the-scenes tool that
enables security, management, communication, and many of the
connections that improve our day-to-day lives. For example, con-
sider the invention of Secure Socket Layer (SSL, deprecated in favor
of TSL), which is based on cryptographically signing the content.
Hospitals, banks, governments, and businesses all protect your data
with cryptography.

This chapter discusses how cryptographic tools can be applied to
a decentralized financial database to give rise to cryptocurrencies,
especially Monero.

https://en.wikipedia.org/wiki/Caesar_cipher

108

5.1 Math fundamentals

Here is a brief introduction/recap of several mathematical principles
that are at the core of cryptography.

5.1.1 Euclidean division (A/B)

Dividing any number A by another B, written as A/B or A÷B returns
an answer that can either be written as a quotient with a remainder,
or as a decimal alone.

Generally:
A/B = q with remainder r
For example:
12/4 = 3 with remainder 0, which can be written 3.0
in decimal form
13/4 = 3 with remainder 1, which can be written 3.25
in decimal form
27/5 = 5 with remainder 2, which can be written 5.4
in decimal form

5.1.2 Prime numbers

A prime number is any integer (whole number) that is not divisible
by any integer besides '1' and itself. For example:

20 is not prime because it is divisible by 2, 4, 5, and 10, resulting
in whole numbers

	 e.g. 20 ÷ 4 = 5
	 - or -
 20 ÷ 10 = 2

109

7 is prime because any integer that you divide it by will not yield
a whole number

e.g. 7 ÷ 3 = 2.3333

Some example prime numbers include 3, 5, 7, 11, 13, 97, 223, 997,
3413, 4421, 17837, 145601, 428567, 1171967, and even much larger
numbers like 20747222467734852078216952221076085874809964747
21117292752992589912196684750549658310084416732550077 or the
twin primes 2,996,863,034,895  × 2^1,290,000 ± 1, which have over
350,000 digits each!

5.1.3 Modular arithmetic

Modular arithmetic describes numbers that wrap around a particular
integer. An intuitive example is the 12-hour clock. If you stay up for
5 hours past 11:00 PM, you would not encounter 16:00 PM o'clock!
Instead, at midnight, the time wraps around to zero (so 5 hours past
11:00 PM is 4:00 AM the next day).

Given any two positive numbers, A (the dividend) and B (the
divisor),

A modulo B = the remainder r from A/B.

In the context of clocks, staying up 5 hours past 11:00 PM could
be represented as:

(11:00 PM + 5 hours) mod 12 = …
 = 16:00 mod 12
 = 4:00 (AM)

110

5.1.4 Integer representation

Integers can be represented in many different encodings, several of
which are encountered frequently in computer science.

Most people are quite familiar with the base-10 “decimal” system,
which represents numbers using 10 characters:

0,1,2,3,4,5,6,7,8,9.

“Hex” encoding adds 6 extra characters, for a base-16 set:
0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f.

The integer written as 11719682 in base-10 can be expressed as B2D402
in base-16. Note that a larger character set requires fewer digits
(shorter strings) to express the same number.

Computers “think” in base-2, using only the characters “0” and
“1.” This is called binary and the number 11719682 (base-10) would
be represented as 101100101101010000000010.

Monero prints final addresses and keys in base-58, which uses
Arabic numerals and most of the Latin character set (both uppercase
and lowercase). It is similar to another scheme called Base64, how-
ever it has been modified to avoid numbers and letters that might
look ambiguous when printed. Monero uses this format, strictly for
the convenience of human users, who often must manually read or
transcribe long addresses.

111

The base-58 alphabet is:
123456789ABCDEFGHJKLMNPQRSTUVWXYZ-

abcdefghijkmnopqrstuvwxyz

Note: Zero (0) along with the letters I (uppercase i), O (uppercase
o), and l (lowercase L) are not present in this Base58 alphabet due to
their ambiguity with each other.

5.1.5 Elliptic curves

5.1.5.1 General introduction

Elliptic curves are defined as the set of 2-dimensional (x, y) points
that satisfy an equation:

y2=x3+ax+b.

For example, with fixed coefficients a = 2 and b = 3, this
equation becomes

y2=x3+2x+3,

which is satisfied by many pairs of points such as:

x = 3 and y = 6
x = 3 and y = -6
x = -1 and y = 0.

5.1.5.2 Ed25519 Twisted Edwards

Monero uses a particular Twisted Edwards elliptic curve for cryp-
tographic operations, Ed25519, which is the birational equivalent

112

of the Montgomery curve Curve25519.

The ed25519 curve can be expressed algebraically as

- x2 + y² = 1 − (121665/121666) x² y².

Thinking back to our general elliptic curve equation, this Twisted
Edwards is a special case using the parameters:

 a = -1 and b = 121665/121666.

Recently, it has become clear that a NIST-backed PRNG (Pseu-
do-random Number Generator Algorithm) is flawed, and contains a
potential backdoor. Since the NIST4 standard algorithms have had
recent issues, and the Twisted Edwards curve was selected to address
many concerns held by the cryptography community.

Seen from a broader perspective, curves selected by the NIST are
also implicitly supported by the NSA. These endorsements are viewed
suspiciously by the cryptography and cryptocurrency communities
due to previous incidents when the NSA used their authority over
NIST to weaken algorithms suggested by the latter.

Twisted Edwards curve Ed25519 is not subject to any patents, and
the team behind it has developed and adapted basic cryptographic
algorithms with efficiency in mind. This curve is currently believed
to be secure.

5.1.5.3 Elliptical operations

Elliptic curve point addition and scalar multiplication are fundamental
operations for elliptic curve cryptography schemes. It's helpful to

https://en.wikipedia.org/wiki/Dual_EC_DRBG

113

have a basic understanding of these concepts before we dive into
the mechanics of Monero's calculations.

Elliptic curve point addition operates differently than the typical
addition encountered in everyday arithmetic. To add two points
together on an elliptic curve you must find the line between those
two points and then find the point at which the curve intersects with
that line. That point is then reflected over the x-axis to arrive at the
final point.

When adding a point to itself, known as point doubling, you must
find the tangent line to the starting point to get to the point at which
that tangent line intersects with the curve. That point is then reflected
over the x-axis to arrive at the final point.

Scalar multiplication utilizes both a point on the curve and an in-
teger. To multiply a point, P, by an integer, S, the point is added to
itself S times. Many cryptographic schemes, such as those employed
by Monero, use a common base point on the elliptic curve as a gen-
erator point to generate public keys from private keys.

When the curve generator point is added to itself many times,
the resulting point cannot be used to determine how many times the
operation occurred. This problem is often referred to as the elliptic
curve discrete logarithm problem. This kind of scalar multiplication
is considered a one-way function, since reversing the operation is
so difficult.

5.2 Cryptography basics

Monero is the leading secure and untraceable cryptocurrency thanks

114

to its unique privacy-oriented cryptographic features, which we'll
explore more thoroughly in this chapter. This is one of the more
technical chapters of the book, due to the mathematical nature of
cryptography. More complex techniques are built upon simple prin-
ciples known as cryptographic primitives.

A cryptographic primitive is an algorithm that serves as the build-
ing block for cryptographic protocols. Monero employs a wide va-
riety of cryptographic primitives for various uses, some of which
we covered conceptually in chapters 3 and 4. Monero's intentional
approaches to privacy and (ASIC-resistant) proof of work require
more sophisticated cryptographic tools than those used by many
other cryptocurrencies.

5.2.1 Symmetric and asymmetric cryptography

For encrypting data, algorithms can be characterized as symmetric
or asymmetric depending on what type of keys are used.

Symmetric encryption requires the participants to share a secret,
for example you encrypt a message by the password “hunter2”
and the recipient uses the password “hunter2” to decrypt it. To
communicate in this way, both parties must have agreed on the
shared (symmetric) secret ahead of time. This practical issue limits
the utility of symmetric encryption for many applications.

Asymmetric encryption allows two parties to interact securely with-
out sharing a particular secret. This type of cryptography is woven
into the framework of internet security, end-to-end messengers, and
cryptocurrencies.

115

Bitcoin uses asymmetric encryption with two keys:

•	 private key - for signing transactions and for decrypting data
•	 public key - for signature verification and encrypting data

Monero's more complex cryptographic framework requires four keys:

•	 public view key - used to verify the validity of addresses
•	 private view key - used for viewing data such as the balance, 	

fees and transactions amounts (the view key cannot create or
sign transactions)

•	 public spend key - another public key for transaction verification
•	 private spend key - used for signing transactions, i.e. sending

moneroj

Your public Monero address is a direct representations of the
pair of public keys, whereas Bitcoin (and clones) use a hash of their
single public key. EdDSA keys (both private and public) are 256
bits long, or 64 hexadecimal characters. Not every 256-bit integer is
a valid EdDSA scalar (private key); it must be less than the “curve
order” described with the equation in the Ed25519 function section.

5.2.2 Hashing

Chapter 4 discussed the concept of hashing and how its uses range
from confirming data fidelity to distributing rewards in Proof of
Work. Example hashes are shown in the cryptography section toward
the end of Chapter 4.

Selecting a good hashing algorithm is crucial for generating ad-
dresses and keys in a secure way. If two different inputs produce the
same hash output, this is known as a collision. Hashes are commonly
used as an identifier in blockchain systems, relying on their effective

116

uniqueness. Furthermore, a collision during seed generation would lead
to multiple individuals with the same keys and addresses; obviously
this would be extremely problematic!

Monero uses the CryptoNight PoW system, which employs a special
CryptoNote hash algorithm, which is build on the Keccak hash. The Ke-
ccak algorithm won a NIST competition to be designated SHA3, and is
designed by non-NSA engineers. Monero uses the Keccak-256 hashing
function with 32-byte output for both transaction and block hashing.

5.2.3 Monero pseudorandom number generation
(PRNG)
When users and computers are creating new keys, it is crucial that they
find new keys that others cannot guess. This is actually a very difficult
task, since both hardware and software are typically designed to favor
reproducibility. If the computer generates randomness in a predictable
way, then the output can be ostensibly random but somewhat easier to
guess.

For example consider a PRNG that simply shuffles the digits of the
current time to make a 4-digit key. So at “10:34” it might output “0413”
or “1403” or “0134” … If you wanted to keep the output key secret, this
would be a terrible method for a few reasons:

•	 An attacker who knows that you made your key when you got to
work around 12:45 AM would know that the digits “1” and “2”
appear, which narrows the choices down to significantly fewer
options.

•	 There are no HH:MM times of day with three “9”s. In fact, there are
no times with any three digits chosen from {6,7,8,9} since 17:89 h,
18:78 h, etc are impossible times. This rule eliminates many 4-digit

117

pins, leaving the attacker to guess from a much smaller pool.

The above clock-based random number generator is awful because
using the time of day as an initial seed is predictable. The initial seed
should be much more difficult for an attacker to guess. Good random
number generators introduce lots of entropy to make their outputs
unpredictable. Simply shuffling 4 digits does not introduce much
entropy, another reason that our PRNG above would be insecure.

When generating wallets, the user's operating system provides
the initial seed / entropy source. Monero then repeatedly applies the
Keccak hashing function, to lead to an unpredictable and non-repro-
ducible output. Each round of hashing produces an output that is
used as the input for the next hash.

5.3 Generating Monero keys and addresses

5.3.1 Picking a seed

In chapter 2 we talked about the heart of your wallet: its seed. Your
wallet generates this secret that is used to derive all of your keys, and
access/spend your funds. In that overview, we simply considered
the 25-word seed mnemonic.

Behind the scenes, a seed is an unique 256-bit integer from which
keys and addresses are derived, for example:

11269910850543594372605105145094037755217762677

8909564691673845134467691053980

These are often represented as a 64-digit base-16 number, for example:

118

f9296f587419f1cdede67de160fca14d1069ecaa4c-

52f012af031eeA09ee039c

(For mnemonic-style keys, this representation of the seed is ac-
tually just the private spend key itself!)

Writing down either of the above key styles would be quite diffi-
cult, and most people would be prone to make at least one mistake.
Conversion to a seed mnemonic phrase is another step included
only for human interpretability and usability. The mnemonic phrase
essentially converts the the above 256-bit number into to a 24-digit
(24-word) base-1626 “number” (since there are 1626 words in the
seed dictionary). This representation of the long seed strings is much
easier to read:

When your wallet presents the 24-word seed, it adds a 25th word
that functions as a checksum, which allows later detection of typos
or mistakes. Monero's mnemonic method encodes with a minimum
4:3 ratio. In other words, four bytes creates three words, plus one
checksum word; eight bytes creates six words, plus one checksum
word; and so on.

The private view key is derived by hashing the seed with Kec-
cak-256, producing a second 256-bit integer, which is then sent to
the function called sc_reduce32 to ensure that it is compatible with
the elliptic curve. The seeds created by this method will always be

lamb hexagon aces acquire twang bluntly argue when

unafraid awning academy nail threaten sailor palace

selfish cadets click sickness juggled border thumbs

remedy ridges border

119

valid scalars as they are sent to sc_reduce32 first.

5.3.2 Key derivation
5.3.2.1 All keys

The Monero seed described above is actually your secret spend key,
from which all other keys are derived. The secret view key is the re-
duced hash of your secret spend key, converted to a valid scalar for
the ed25519 curve.

These two private keys are multiplied by the generator point to
yield the two public keys for your wallet (public spend and public
view). This method for derivating keys is referred to as the determin-
istic method.

5.3.2.2 View-only wallets

You can grant view-only access to a Monero account by setting up
a wallet with your secret view key, but NOT the secret spend key.
These view-only wallets can see all incoming transactions, but cannot
spend moneroj or see outgoing transactions.

There are several situations in which it is useful to check incom-
ing transactions without send access. For instance, individuals with
cold wallets can use the view key to check that funds arrived, while
keeping their secret spend key safely sequestered away. Likewise,
developers can build systems that can detect and respond to incoming
payments, without needing to have the ability to move those funds.

This feature is especially valuable for charities, which can share
their view key to ensure transparency and accountability around

120

donations. If you make a donation to the a public address, you can
use the view key to verify that the charity received your funds.

For example, consider the the main Monero donation address:
44AFFq5kSiGBoZ4NMDwYtN18obc8AemS33DBLWs3H7otXft3XjrpDt

QGv7SqSsaBYBb98uNbr2VBBEt7f2wfn3RVGQBEP3A.

Since stealth addresses prevent that public address from being
recorded or searchable on the blockchain, the community also pub-
lishes the view key (f359631075708155cc3d92a32b75a7d02a5d-
cf27756707b47a2b31b21c389501) so that the public can review
donation activity.

Since anybody with the view key can see the total amount that
a wallet has received, a transparent charity that has been gifted 100
XMR cannot divert 90 XMR and claim that they only received 10 XMR.
This functionality is especially valuable for crowdfunding situations
where a certain donation threshold must be reached.

The inability to see outgoing transactions from a view-only wallet
is a feature, not a bug! If the outgoing transactions were made public,
it would reveal when an output has been spent. This would be very
problematic, since ring signatures rely on spend state ambiguity.
Suppose a charity reveals when an output is spent; all appearances
in future (and previous) ring signatures can be identified as decoys.
Not exposing outgoing transactions is thus necessary for maintaining
the integrity of overall network privacy.

121

5.3.3 Address generation

A Monero wallet's standard address is composed of the two public
keys (the public spend key + public view key) derived in the last sec-
tion. It also contains a checksum and a network byte which identifies
both the network and the address type.

5.3.3.1 Network byte

The network byte is used differentiating between various crypto-
currencies and networks. CryptoNote coins specify the appropriate
values in the file src/CryptoNote_config.h, for example

uint64_t const CRYPTONOTE_PUBLIC_ADDRESS_BASE58_

PREFIX = 18;

Monero's main network uses '18' to indicate a primary address (this
is why Monero primary addresses begin with a '4,' which is the ASCII
representation).
Monero developers use the testnet and stagenet, which have their
own unique network bytes:

5.3.3.2 Concatenated public keys

The public spend key and public view key are concatenated and ap-

 Name Code value ASCII value for prefix
Main net primary address 18 4
Main net subaddress 42 8
Test net primary address 53 9
Test net subaddress 63 B
Stage net primary address 26 5
Stage net subaddress 36 7

122

pended to the network byte, to produce the raw address (everything
except the checksum). While this address is still in a raw format, it
contains all of the key information: keys for crafting transactions
and network metadata to ensure that transactions are announced
to the correct network.

5.3.3.3 Checksum

Since Monero transactions are non-reversible, it's crucial to send
payments to the right address! To help avoid typos and minor mis-
takes, the address includes a checksum. If the sender makes a typo
or doesn't capture the whole address, the checksum will not match,
indicating that the string entered is not a valid address.

This checksum is generated by Keccak hashing the address infor-
mation collected in the previous section. The hash digest is shortened
to the first 4 bytes, and used as the checksum.

5.3.3.4 Bring it all together: address finalization

Lastly, the network byte, keys, and checksum are concatenated ac-
cording to Monero specification:

Index Sizes in
bytes

Description

0 1 identifies the network and address type - '18' for
mainnet and '53' for the testnet (in base-58, '4' and
'9' respectively)

1 32 public spend key
33 32 public view key
64 4 checksum (hash created with Keccak function of

the previous 65 bytes, trimmed to first 4 bytes)

123

Lastly, this 69-byte output string is encoded into the Monero
base-58 format. This conversion increases the length to a 95-character
string that is easy to read and write. That's all there is to it! Monero
primary addresses simply contain:

[network byte + public spend key + public view key + checksum]
Example standard address:
4BKjy1uVRTPiz4pHyaXXawb82XpzLiowSDd8rEQJGqvN6AD6kWos

LQ6VJXW9sghopxXgQSh1RTd54JdvvCRsXiF41xvfeW5

The pseudo-code below describes the process of generating a
public address, using Hs() to represent Keccak hashing and '||' to
represent string concatenation.

 Checksum = Hs(Varint(Prefix) || public spend key ||

public view key)

 SerializedString = Base58(Prefix || public spend key

|| public view key || checksum)

Chapter 7 includes actual Python code for generating keys and
addresses yourself!

5.3.4 Subaddresses

Privacy for Monero transactions is achieved by three primary con-
structions: ring signatures, stealth (one-time) addresses, and RingCT.
These mitigate the risk of transactions being linked by analyzing
blockchain data. However, one must consider risks of “off-chain”
linkability (in other words, information collected from other sources
besides the blockchain data itself).

For example, suppose your primary address has received pay-

124

ments from several different individuals. Thanks to Monero's stealth
address technology, your public address is never explicitly record-
ed in transactions, so nobody can to link those transactions from
analyzing the blockchain (including the spenders). However, this
cryptographic privacy is entirely circumvented if two of your senders
communicate with each other and discover that they have both been
sending moneroj to the same address!

You can avoid this risk by generating multiple subaddresses,
sharing a unique one with each sender. The subaddresses are derived
from the same keys as your primary address, so funds received to
any subaddress will route to the same overall wallet balance. How-
ever the various subaddresses are cryptographically unlinkable, so
multiple people sending moneroj to the same wallet cannot recognize
this by comparing their address lists.

5.3.4.1 Creating a subaddress

Recall that each wallet has two pairs of keys. The private view key
(pV0) and private spend key (pS0) are kept secret, while the public
view key (PV0) and public spend key (PS0) are encoded into each
address. As discussed, the public keys are generated by multiplying
the private keys by the generator point (G) on the elliptic curve, i.e.
(PV0, PS0) = (pV0, pS0)G.

Your wallet can create a vast number of subaddresses, each with
a different index 'i' (typically starting at i=1). Each subaddress will
have its own sets of keys at each index, with unique private (pVi,

pSi) and public (PVi, PSi) keys.

The formula to create a public spend key for the ith subaddress is:

125

	 PSi = Hs(pV0||i)G+PS0

This process begins by concatenating the index 'i' to the primary
address private view key (pV0), and passing that result through the
hash_to_scalar function (note: in practice, the reference client
wallet also concatenates the string SubAddr to the data, as a com-
mon salt for the hashing). The resulting scalar is multiplied by the
curve generator point and added to the the primary public spend
key through elliptic curve point addition.

This subaddress public spend key is multiplied by the primary
private spend key to yield the subaddress public view key:

PVi = pV0*PSi

The subaddress public keys are encoded into the public address
following the same convention as primary addresses:

Subaddress_i = base58(network byte || PSi || PVi

|| checksum)

However, the mainnet network byte for subaddresses is 0x42,
which is why they all begin with the digit an '8'.

5.3.4.2 Sending to a subaddress

This different identifying first network bit is crucial, since transactions
to subaddresses must be constructed slightly differently than normal.

When constructing a transaction, wallets typically generate 32
random bytes to serve as the private key. When sending to a primary
address, this random key is multiplied by the elliptic curve gener-

126

ator point through elliptic curve scalar multiplication to yield the
transaction public key. However, when sending to a subaddress, the
private transaction key is instead multiplied by the public spend key
of the receiving subaddress.

5.3.4.3 Receiving to a subaddress

Due to the obfuscated nature of the Monero blockchain, a wallet must
scan every transaction to ascertain whether it belongs to the owner.

To ascertain whether a given output X (with public transaction
key R) was sent to the primary address, the wallet checks calcu-
lations based on its the public view key and public spend key. If
the equality X==Hs(pV0*R)G+PS0 is true, then that output can be
unlocked and spent!

However, the process is slightly different to check which outputs
belong to subaddresses. The calculation is mostly the same, except
that the hash_to_scalar term is subtracted from the output and
compared against subaddress public spend keys. The wallet knows
it has found on output that it owns, if the equality PSi == X -

Hs(pV0*R)G is true.

5.3.5 Other methods for key derivation

To add to the confusion, there are presently at least 3 different meth-
ods of private key derivation used in Monero (this is also the case
for Bitcoin). These methods vary in a few “key” ways:

•	 Original (non-deterministic style): The private spend key and
private view key are both independently and randomly chosen
to form an account. There is no good way to backup a non-

127

deterministic account, other than retaining copies of each file.
Due to better alternatives, this unwieldy method is no longer
recommended.

•	 Mnemonic (deterministic or “Electrum”) style: In this style, all
of the keys are derived from a single private spend key, which
is referred to as the seed. The private view key is derived by
hashing the private spend key with Keccack-256 to produce a
valid EdDSA scalar. These accounts are easy to backup, since you
only need to write down the seed (which is usually expressed as
a base-1626 mnemonic phrase).

•	 MyMonero Style: The MyMonero wallet family uses a method
similar to the Electrum convention, however the seed phrase is
13 words instead of the usual 25 words. The 13 words convert
to a 128-bit integer that is used for both spend and view key
derivation. The seed integer is hashed with Keccak-256 and
converted to the private spend key. This private spend key is
hashed again with Keccak-256 and converted to the private
view key.

You may have noticed a critical difference between the MyMonero
and Electrum seed styles. MyMonero creates the private view key
by hashing a random integer, whereas the Electrum style hashes the
private spend key. This means that the 13 and 25 word seeds are not
compatible - it is not possible to create an Electrum-style account
that matches a MyMonero-style account (or vice versa) because the
view keypair will always be different.

128

5.4 The privacy technologies

5.4.1 Stealth address

Chapter 3 conceptually described how one-time addresses, also
known as stealth addresses, allow transactions to be posted to the
network without revealing the recipient's true address. This section
will go deeper to explain the cryptography behind that one-time
public key.

5.4.1.1 Sending

The CryptoNote protocol calculates the receiving one-time address
according to the formula X = Hs(r*PV|i)G + PS. Let's step
through the meaning of these symbols, and how Maria would gen-
erate a one-time address when she sends money to George.

The variable r is the transaction private key, which is a 256-bit
pseudorandom scalar. Maria (the sender) is the only person that
will ever know this key; even George (the recipient) never learns
the random number that Maria's wallet chose for r.

Maria then multiplies George's public view key, PV, by r and
then appends the output index, i. This quantity (r*PV|i) is then
run through the hash_to_scalar function, Hs(). This function
hashes its inputs using the Keccak-256 algorithm, then takes that
resulting hash modulo the prime number

2^255 + 27742317777372353535851937790883648493.

The Hs(r*PV|i) term calculated in the above paragraph is
multiplied by The ed25519 basepoint, G. Lastly, Maria adds this

129

quantity to George's public spend key, PS, to produce the final output,
X, which is the stealth address.

This convoluted process allows Maria to hide the transaction to
George on the blockchain, using a randomly-generated one-time
address that nobody will be able to connect to him.

5.4.1.2 Receiving

Given how well Maria hid the moneroj that she was sending to George
(obscured by a transaction private key that even George doesn't know),
you might wonder how he can find it on the blockchain!

As described in chapter 3, George must scan the blockchain for
outputs that belong to him. The process is very similar to the method
that Maria used to generate the address.

George takes the public transaction key R from the blockchain,
and multiplies it by his private view key, pV. Following similar steps
as Maria, George appends the output index i and then applies the
hash_to_scalar function to (pV*R|i). He then multiplies the
result by G and adds his own public spend key, PS. If this value
matches the output, then it belongs to him.

In other words, George's wallet scans over every transaction in the
blockchain to identify outputs for which X = Hs(pV*R|i)G + PS.

5.4.2 Ring Confidential Transactions

Ring Confidential Transactions (RingCT) obscure the amount of
moneroj being sent in a transaction. RingCT was implemented in
January 2017 and became mandatory in all transactions after Sep-

130

tember 2017.

Only transactions that mint new moneroj as coinbase rewards
have visible amounts, not masked by RingCT. This is an auditing
feature that allows any any network participant count and verify
exactly how many moneroj have been generated. After this public
coin emission, these transactions are converted to RingCT outputs
before further use.

All non-coinbase transactions employ RingCT to encrypt the
transaction amount. The amount for each transaction is encrypted
two different ways, which are both included in the message.

First, the amount is encrypted by a key derived from the public
information in the recipient's address. This version is recorded in the
ecdhInfo field, and can only be decrypted and read by the recipient,
using the transaction shared secret.

Secondly, the amount is integrated into a Pedersen commitment,
which allows other Monero users to verify the validity of the trans-
action themselves. Nobody can retrieve the transaction amount from
the Pedersen commitment, however anybody can inspect the result
to mathematically verify that the outputs balance the inputs. This
prevents any transactions attempting to forge moneroj.

There are two key aspects to RingCT verification:

1.	 The sender verifiably proves that all outputs contain a positive
amount, using a range proof. The range proof demonstrates
that the masked number can be generated as the sum of pos-
itive powers of 2, without revealing what those powers are.
Without range proofs, a sneaky user with 5 XMR could create

131

a transaction with a pair of outputs containing +13 XMR and
-8 XMR.

2.	 The sender also demonstrates that the inputs balance the out-
puts, which is non-trivial given that ring signatures contain
decoys to prevent the verifying party from knowing the true
source of the input funds! Homomorphic Pederson commit-
ments enable the sender to prove that one of the potential
inputs has a zero difference with the outputs, without revealing
the amount in the process.

For a simple analogy, consider the following example equations.
Like masked transaction amounts, you can verify that whether each
equation is valid without knowing the value of A.

A = our output, nobody knows that

5A + 1A + 4A = 10A 	 TRUE! Verified, without knowing A

6A + 4A + 2A = 14A	 FALSE! Not verified, rejected!

5.4.3 Ring signatures

Monero utilizes ring signature technology to protect the privacy of
each transaction's sender. A ring signature is a type of cryptographic
signature that allows one active participant to sign a message on be-
half of a group. The private key owned by the active signer is mixed
with public key information from the other members to produce a
single signature. Anybody can validate the signed message against
the public keys to verify that one of the ring members initiated the
signature, however it is impossible to ascertain which member con-
tributed the private key.

132

In the context of Monero, the message is a transaction, autho-
rized by the ring signature. The output that is actually being spent
is the true signer, and he public keys from other outputs (from past
transactions) are mixed in as decoy signers. The actual signer and
decoy signers are mathematically equally valid; the resulting ring
signature cannot be cryptographically examined to determine which
member actively initiated the signature. Consequently, no outside
party (including the recipient) can ascertain which of the outputs
referenced in a transaction was actually spent.

Every ring signature produces a single key image that is derived
from the output actually being spent. This is a cryptographically-se-
cure process: each output corresponds to a single key image, and
producing the key image does not reveal the true signer in the ring.

When the owner of an output spends it in a new transaction, the
network stores the key image that was produced by the ring signa-
ture. Since the network cannot identify which outputs are spent, it
instead keeps track of which key images are spent! If the owner tried
to fraudulently spend the output again, the same key image would
be produced, so the network knows to reject the transaction.

Let's dig into the actual mathematics of generating a ring signature.
Throughout this example, let HS be a hash function that returns sca-
lars (in the appropriate field) and HP be a hash function that returns
points (in the appropriate curve group). We purposely avoid formally
defining these domains and codomains to avoid complication. Let
G be a fixed point known to all parties.

You are going to sign the transaction message M with a ring sig-
nature. Monero currently requires eleven ring members for each
signature, however let's consider a simplified example with three ring

133

members. You have the keypair (public and private) for the output
that you are spending, and select two other outputs (and their public
keys) to serve as decoys. Naturally the indexing of the ring members
should be randomized, since the cryptographic anonymity would
be circumvented if the true signer was always in slot #1. For the
simplified example with three ring members, suppose your wallet
has randomly selected to put the true source of the funds in slot #2.

You retrieve the public output keys for the decoys (P1 and P3)
from the blockchain, and you have both the private key (p2) and the
public key (P2 = p2G) for the output that you are spending. You start
by choosing a random number u, which you will later discard. First
you form the following commitment, starting at the index after the
one you picked for your key:

c3 = Hs(M,uG,uHp(P2))

To form the rest of the commitments, you also choose random
numbers s3 and s1 that you'll need later:

c1 = Hs(M,s3G + c3P3 , s3Hp(P3) + c3p2Hp(p2))

Notice that you are including several pieces of information here:
the public key P3 you plucked from the blockchain, the random
number s_3 you came up with, the previous commitment c3, and
a value p2 Hp (P2) formed from your own key. You keep going:

c2 = Hs(M, s1G + c1P1, s1Hp(P1) + c1p2Hp(P2))

But you are not quite done! To hide where your actual key is, you
cleverly define s2 = u − c2 p2. The signature you send to the block-
chain and the world contains several quantities: (c1 , s1 , s2 , s2 , J),

134

where J = p2Hp(P2) is the key image used in each commitment.
We rename it here to highlight the fact that the public doesn't know
the pieces that were used to form it.

Here's why this is clever: by setting s2 = u − c2 p2, you can re-
arrange to see that u = s2 + c2p2 . This means that the public sees
the first commitment c3 that you made as the following:

c3 = Hs(M, s2G + c2P2, s2Hp(P2) + c2p2Hp(P2))

This looks exactly like the other commitments! Although you
never broadcast u, you use it to cleverly make each commitment
look identical in the eyes of observers. This is the power of the ring
signature. Nobody can ascertain which commitment hides your true
key, but everybody can mathematically verify for themselves that:

1.	 the sender knew one of the private keys represented by the
public keys

2.	 the key image was computed correctly

Observe that the key image J = p2Hp(P2) was uniquely calcu-
lated from the true output's keypair, without any random numbers
or decoys' public keys. Thus, any fraudulent attempts to spend the
output a second time will generate an identical key image. Since
the network keeps track of which key images have been used, any
attempts to reuse outputs are easily detected and rejected.

Note that the above example of a Back-style LSAG ring signature
is included for educational purposes, and should not be used as a
reference document for production implementations.

135

5.4.4 Further resources

If you want to venture even further into the calculations behind these
technologies, check out Zero to Monero, a highly-technical mathe-
matical tour that is also available as a free community-funded PDF.

5.5 The Monero blockchain

By now you're familiar with the importance and utility of blockchains
as distributed public ledgers. These blocks are structured and ordered
into an immutable append-only database, secured by cryptographic
tools that prevent any tampering or cheating. Monero's blockchain
is unique and we'll discuss its technology and specifications in this
section.

5.5.1 Lightning Memory Mapped Database

Monero uses the Lightning Memory Mapped Database (LMDB)
system to store its blockchain. LMDB is a software library that pro-
vides a high-performance embedded transactional database in the
form of a key-value store. This means that it is highly effective, and
easy to search.

LMDB is written in C++ with API bindings several programming
languages, and is developed by Symas Corporation. Here are a few
LMDB features:

•	 Arbitrary key/data pairs storage as byte arrays
•	 Range-based search capability
•	 Support for a single key with multiple data items
•	 Advanced methods for appending records at the end of the

136

database, which gives a dramatic write performance increase
over other similar stores

5.5.2 The structure of a block

The CryptoNote standards define specifications for storing and
delineating data within blocks and on the blockchain. The block
structure contains three main components:

•	 The block header
•	 The base transaction
•	 A list of transaction identifiers (hashes of transactions mined in

the block)

5.5.2.1 The block header

Each block starts with a header that contains key metadata. The
“major_version” defines the block header parsing rules, so it can be
interpreted correctly. The “minor_version” defines the interpretation
details that are not related to the main header parsing.

Even if the minor version is unknown, it is always safe to parse
the block header of a particular major version. Parsing the block
header with an unknown major version is risky, since the contents
of the block header may be misinterpreted.

Field Type Content

major_version varint Major block header version

minor_version varint Minor block header version

»

137

timestamp varint Block creation time
(UNIX timestamp)

prev_id hash Identifier of the previous
block

nonce 4 bytes Any value which is used in
the network consensus algo-
rithm

5.5.2.2 Base Transaction

Each valid block contains a single base transaction that routes its
coinbase reward to the miner. The base transaction must follow the
coin emission rules, and include the block height field.

5.5.2.3 List of transaction identifiers

 Field Type Content

version varint Transaction format version

unlock_time varint UNIX timestamp.

input_num varint Number of inputs. Always 1 for base tran-
sactions.

input_type byte Always 0xff for base transactions

height varint Height of the block which contains the
transaction

output_num varint Number of outputs

outputs array Lists of outputs as array

138

The base transaction is followed by a list of transaction identifiers.
These identifiers are calculated by taking the Keccak hash of the
transaction body. The list starts with the number of identifiers and
is followed by the identifiers themselves (if the block is not empty).

5.5.2.4 Calculation of Block Identifier

The identifier of a block is produced by hashing the following data
with Keccak-256:

•	 size of block_header
•	 block_header
•	 Merkle root hash
•	 number of transactions (varint)

The Merkle root hash “attaches” the transactions referenced in
the block's body to the block header: once the Merkle root hash is
fixed, the transactions cannot be modified. This security feature
keeps blockchains safe from tampering or any kind of retroactive
modification.

5.5.3 The mining economy

Block rewards and fees were mentioned conceptually in chapters
2 and 4. Now you'll actually learn about the complexities of block
sizes, rewards, and the relationship with fees.

5.5.3.1 Mining coinbase reward

As discussed in Chapter 4, all moneroj originate as rewards paid to

139

miners for successfully completing blocks. The size of this coinbase
payment depends on the the current supply (A) and the initial number
of atomic units (S = 264 - 1). An atomic unit is the smallest divi-
sion of Monero currently recognized by the network (1x10-12 XMR)

Base Reward = 2 * ((S - A) * 2-20 * 10-12)

Monero has a tail emission, which is a small fixed base reward that
will continue after most of the supply has been mined. Monero's
minimum base reward is 0.6 XMR per block, so miners will never
have to subsist on fees alone.

5.5.3.2 Dynamic block size

Monero has a dynamic block size, which allows for continuous ad-
justment as the network grows, in contrast to many cryptocurrencies
that use a static (fixed) block size. For example, Bitcoin's initial 1
MB fixed block size caused scaling issues, by limiting the number
of transactions that could be included in each block (consequently
limiting the overall transaction volume for the network). In 2017, this
bottleneck resulted in periods with extremely high fees and delayed
processing of transactions. Various proposed solutions were put
forth, resulting in a period of contentious debate.

To avoid these issues, Monero uses a dynamic block size mecha-
nism that allows the miners to use a larger blocks to accommodate
increased traffic. However, if the block size was left entirely uncon-
strained, the Monero network could be vulnerable to spam attacks,
i.e. lots of small transactions designed to exhaust network and storage
resources by making the blockchain expand too rapidly.

To prevent excessive blocksize growth, Monero mining proto-

140

cols includes a penalty function that decreases the coinbase reward
for oversize blocks. The original CryptoNote authors included this
consensus rule to limit the rate of block size expansion and avoid
rapid blockchain bloat.

If a block is mined with size (B) that is is larger the median size
of the last 100 blocks (MN), part of the base reward is withheld, ac-
cording to:

Penalty = BaseReward * ((B / MN) - 1)
2

Miners receive the full reward for any sized block up to 300 kB;
for anything larger, the penalty function “kicks in”. The maximum
block size is 2*MN, at which point the entire coinbase is withheld.

5.5.3.3 Fees

When transaction volume is low and block sizes are small, miners
are rewarded with the full coinbase, and fees are minimal.

However, imagine a different scenario: What happens if the me-
dian size of the last 100 blocks grows larger than the penalty-free
block size (300 kB)? Then, the dynamic fee algorithm comes into play!

Fees are calculated by the weight in of the transaction in kB. Larger
(“heavier”) transaction incur a higher fee. The dynamic fee calcula-
tion is complex, taking into account several factors of the Monero
ecosystem, and the transaction's priority (the sender can incentivize
miners to quickly include an urgent transaction by attaching a larger
fee). The fees necessary to be competitive in an upcoming block are
calculated according to:

141

Fee per kB = (R/R0) * (M0/M) * F0 * (60/300) * 4

•	 R is the base reward
•	 R0 is the reference base reward (10 XMR)
•	 M is the block size limit
•	 M0 is the minimum block size limit (300 kB)
•	 F0 is 0.002 XMR
•	 60/300 is the adjustment factor to account for the increase of

the penalty-free block size limit (adjusted from 60 kB to 300 kB
in 2017)

•	 4 is the adjustment factor to account for the default fee multiplier
(the lowest fee level uses a multiplier of x1, and a normal priority
transaction uses x4)

Thus, the fees take into account the increase in the median block
size relative to the minimum block size. For example, a 600 kB block
size (twice the minimum) reduces the fees by half.

Ideally, an increase Monero's exchange rate and usage would
result in a reduction of absolute fees (i.e. in terms of XMR). This fee
reduction mechanism has less effectiveness during extreme price
increases that are disproportionately larger than the increase in
transaction volume (and thus block size).

The dynamic fee algorithm is designed to function when the
median block size is consistently above 300 kB. While the system
is intended to account for increases in price, usage is not perfectly
correlated with price, and is thus an imperfect proxy.

5.5.4 Bulletproofs

Bulletproofs are a new feature that dramatically decreases transaction
size, which in turn reduces the overall fees per transaction! Monero

142

transactions used to be quite large (usually > 12 kB), so bulletproofs
were a much-anticipated enhancement.

Monero's privacy features necessitate several complex “tests”
during transaction validation, in order to prevent abuse and spam.
This includes verification of masked amounts, checking fees, and
confirming that no double spends are occurring.

Most developers have encountered “overflow” errors, when an
operation creates a value outside the range that can be represented.
Unfortunately, “infinite” is an abstract concept for electronics, which
encounter many obstacles with large numbers.

Since RingCT hides the transaction amounts, complicated calcu-
lations are necessary to verify that the inputs and outputs balance
properly. The useful algebraic properties of commitments are valuable
for enabling masked transactions whose validity can be confirmed
by any participant.

However, it is also crucial to ensure that each amount is a positive
value that will not cause an overflow. This is where range proofs come
in, by allowing anybody to verify that a commitment represents an
amount within a specified range, without revealing anything else
about its value. Each range proof used to require ~ 7 kB, so they made
up the bulk of a transaction's size. Most transactions have two outputs
(the destination and change address) necessitating at least ~12 kB.

Bulletproofs employ some clever mathematical tricks to construct
the range proof with a more efficient mechanism. This reduces the
size of a single range proof to ~2 kB!

Before bulletproofs, transactions with multiple outputs required

https://web.stanford.edu/~buenz/pubs/bulletproofs.pdf
https://eprint.iacr.org/2016/263

143

multiple separate range proofs. Consequently, transaction size scaled
linearly with the number of outputs (e.g. 1 output = 7 kB, 2 outputs
= 14 kB). With bulletproofs, size instead scales logarithmically with
more outputs (e.g. 1 output = 2 kB, 2 outputs = 2.5 kB).

By reducing the size of each range proof, and allowing them to
combine in a more efficient way, bulletproofs dramatically decrease
transaction size, and thus fees. Bulletproofs were enabled by the
Monero v0.13.0 network upgrade in October 2018, as an opt-in fea-
ture that will become mandatory during the subsequent upgrade.

144

Chapter 6

Community and contributing

The Monero Project is a collaborative open community, and
we welcome your contributions to code or other facets of the
ecosystem. This chapter provides a high-level overview of

our decentralized structure, and contains tips and links for getting
involved.

6.1 Community culture

6.1.1 Principles of openness

While the Monero cryptocurrency itself epitomizes privacy, its com-
munity is built on the core values of transparency and collaboration!
Users, developers, and researchers communicate on IRC channels
that are open to the public. You can also find an active community
of Monero users and developers on other platforms such as Slack,
Mattermost, and Taiga. Key meetings are archived for public access
on the official website.

This culture of cooperation and openness is a natural consequence
of Monero's origin as a code fork from ByteCoin. The developer of
ByteCoin operated with unilateral secrecy, making designs and
decisions without community feedback. The resulting development
mistakes, especially the egregious premine, ruined the viability of
the coin.

The Monero community came into existence by forking the shad-
owy ByteCoin development into the light of a decentralized, collab-
orative, and diverse community. This has undoubtedly strengthened

https://getmonero.org/community/hangouts/
https://monero.slack.com/
https://mattermost.getmonero.org
https://taiga.getmonero.org/
https://getmonero.org/blog/tags/dev%20diaries.html

145

the project on many fronts, and the Monero community has learned
to thrive through cooperation. While cryptography provides the
technical underpinnings for Monero, the community is its real source
of power!

6.1.2 Many great minds work on Monero

The Monero project is a massive community effort, collectively crafted
by hundreds of individuals from all across the globe. At the time of
writing, more than 500 people have contributed code, including 200
in the last year. Monero has adopted an un-governance scheme for
organizing growth and development. The project is comprised of
several different branches working together: the Monero Core Team,
the Monero Research Lab, Monero Workgroups, and the community.

146

The Monero Core Team manages many of the critical tasks for
Monero. Key roles include:

•	 Acting as primary trusted arbiters of the Forum Funding System
on behalf of the community.

•	 Managing the codebase of the Monero Project, which includes
merging code, keeping backups, and ensuring the safety, security,
and free access of the code for any party.

•	 Acting as stewards for the general donation fund, directing its
capital toward endeavors that further the Monero Project.

•	 Acting as trusted signers and distributors of Monero software
and related technologies.

•	 Working with the community to discern a vision and roadmap
for leading the Monero Project.

The Monero Research Lab conducts cutting-edge basic and applied
research on cryptocurrency technologies and analyses. MRL includes
many academics and researchers, and studies are published openly at
https://lab.getmonero.org/

The Monero Workgroups are collaborations formed to join peo-
ple around unique goals. This allows small teams of individuals to
connect and tackle specific tasks. For example, the Monero Hard-
ware Workgroup is well underway on its mission to build the first
open-source community-driven hardware wallet. Another instance
was the Monero Integrations Workgroup, which developed open-
source payment gateways. You can join a workgroup to help with
translating Monero, crafting kits for Meetups, or helping users with
software issues.

https://lab.getmonero.org/
https://getmonero.org/2017/11/13/workgroups-and-resources.html
irc://chat.freenode.net/#monero-translations
https://taiga.getmonero.org/project/sgp-monero-meetup-kit/

147

Ultimately, it is the incredible community that makes Monero
possible! Anybody is welcome to contribute code, propose projects,
fund proposals, help with outreach, or write books about Monero.

6.2 Code culture

6.2.1 Create a pull request for the improvements

Anyone is welcome to contribute to Monero's codebase! If you have
a fix or code change, feel free to submit it as a pull request directly
to the “master” branch. To modify the Monero code, follow this
process to edit a forked copy and recommend your improvements
to the main repository:

1.	 Fork the repository on GitHub
2.	 Clone the repository to your machine
3.	 Make a branch, implement necessary changes
4.	 Commit the files with a clear descriptive message
5.	 Execute git push origin branch-name to sync the local

changes to your forked repository
6.	 Create a pull request (including clear descriptions and

documentation) to submit your changes back to the original
(base) repository

Your modifications may be approved quickly if the change is rela-
tively small or does not affect other parts of the codebase. However,
changes that are particularly large or complex should be discussed
at length with the community.

When submitting a pull request on GitHub, make sure your branch
is rebased. Avoid leaving stray and merge commits from other coders
in the branch you will submit. You may be asked to rebase if there
are conflicts (even if they are trivially-resolvable).

https://forum.getmonero.org/8/funding-required
https://taiga.getmonero.org/project/xmrhaelan-monero-public-relations/kanban
https://github.com/monero-project

148

6.2.2 Patch etiquette

Patches should ideally be submitted as pull requests, following the
process described above. If that can't be done, patches in git for-
mat-patch format can be sent (e.g. post to fpaste.org with a long
timeout, then share a link with #monero-dev on irc.freenode.
net).

Patches should be self-contained. A good rule of thumb is to create
one patch per separate issue, feature, or logical change. Follow the
code style of the particular portion of code that you're modifying, and
avoid making other unnecessary edits, such as whitespace changes
or reindentation. Proper squashing should be done (e.g. if one of
your patches includes a bug that is fixed in a subsequent patch, then
both patches should be merged).

6.2.3 General guidelines

Commit messages should be sensible. The subject line must describe
the patch, with an optional longer body for providing details, doc-
umentation, etc. Well-commented code is strongly encouraged, to
help others interpret and constructively interact with your code. If
your modifications add new functionality, it is helpful to include
testing results with your pull request.

If you've made random unrelated changes (including those due
to an overzealous editor), you can select which modifications are
included in the commit using git add -p, which steps through
each of the edits to confirm which should be included. This helps
create clean patches without any irrelevant changes. git diff dis-
plays changes in your tree, and git diff --cached will show

149

the changes that are currently staged for commit. Hunks that are
added with git add -p, will “move” from the git diff output
to the git diff --cached output, so you can see clearly what
your commit is going to look like.

More specific guidelines regarding common processes are de-
scribed on the official repository of the Monero Project.

6.2.4 Repository for Monero

Many different repositories are hosted at the Monero Project GitHub.
Several of them house components that we've already discussed in
Mastering Monero, for example:

•	 Monero: the core of Monero network which includes the Monero
Wallet CLI, written in C++ language

•	 Monero-site: source code for the https://getmonero.org website
•	 Monero-GUI: Graphical User Interface for Monero, built with

Qt library
•	 kastelo: the community hardware wallet
•	 kovri: The Kovri anonymizing router

These projects are well-documented, so that you can become
familiar with the code and make improvements! There are many
sub-projects with a variety of opportunities for you to contribute to
Monero. Please visit one of the repositories, read through some of
the open issues, and consider how you can leave your legacy in the
Monero codebase.

$ This text is a terminal command. Don't run this
command if you don't know what you are touching.

https://github.com/monero-project/monero/blob/master/CONTRIBUTING.md
https://github.com/monero-project/
https://github.com/monero-project
https://github.com/monero-project/monero/issues

150

Note: At the time of writing, some components of the Monero ecosystem
are shifting their repositories from GitHub to GitLab.

6.3 Introduction to Monero development

Building the Monero code is a complex process, so some tips and
summaries are included here. Linux systems have a built-in shell
that helps with building the Monero core, so consider switching to a
Unix-based operating system, if possible. Monero is written in C++,
with C++11-style referenciation.

6.3.1 Downloading the Monero source code

Monero uses Git for version control; this system allows developers to
track changes and modifications to their code, and easily coordinate
work on shared files. To download the Monero code, simply execute:

6.3.2 Dependencies

To build Monero software from the source code, your path will need
to include the dependencies in the table below. A few of the libraries
are also included in this repository (marked as Vendored). By default,
the build uses the library installed on the system, and ignores the
vendored sources. However, if no library is found installed on the
system, then the vendored source will be built and used.

$ git clone --recursive https://
github.com/monero-project/monero

151

GCC libunbound ldns
CMake libsodium expat
pkg-config libminiupnpc GTest
Boost libunwind Doxygen
OpenSSL liblzma Graphviz
libzmq libreadline pcsclite

6.3.4 Building instruction

Monero uses the CMake build system and a top-level makefile that
invokes cmake commands, as needed. Once you've installed the
dependences, change to the root of the source code directory and
execute the make command to begin the build. The process may take
up to an hour or two. Once the code has finished building, you can
find the Monero binaries in the build folder.

6.3.5 Build troubleshooting

If you encounter errors, the output will typically indicate exactly what
went wrong. A few of the common bugs to troubleshoot include:

•	 An outdated boost version (you may have to manually install
the current one)

•	 Outdated gcc/g++
•	 Missing libzmq3-dev
•	 Missing libreadline-dev
•	 OpenGL errors

You can (optionally) type make debug​ to compile a debugging
build. There are many communities with information to help you
with troubleshooting. Search engine queries with your build errors
are likely to connect you with a solution or people that can help.

https://github.com/monero-project/monero/blob/master/Makefile

152

6.3.6 Building Monero Graphical User Interface

The Monero graphical user interface (GUI) is built with C++ and Qt
libraries. Both are necessary to successfully build the GUI. With the
dependencies in place, you can clone and build the GUI with the
commands:

$ git clone --recursive https://github.
com/monero-project/monero-gui
$ cd monero-gui
$./build.sh

153

Chapter 7

Monero integration for
developers

This chapter covers standards and protocols that developers
can use to interact with Monero and build new tools. First,
the OpenAlias and Monero URI formats are introduced, as

effective ways to communicate addresses and other key details. The
rest of the chapter discusses remote procedure calls with integration
examples in C++ and python.

7.1 OpenAlias: convenient addresses in
text (for humans)

It is extremely tricky for anybody without photographic memory to
intuitively read and memorize cryptocurrency addresses. A real-life
location like “123 Main St” or an email destination like “donate@
masteringmonero.com” is much easier to interpret and recall than
a Monero address, such as “45ttEikQEZWN1m7VxaVN9rjQkpSd-
mpGZ82GwUps66neQ1PqbQM no4wMY8F5jiDt2GoHzCtMwa7P-

DPJUJYb1GYrMP4CwAwNp”.

These cryptocurrency addresses contain a lot of information, but
are unwieldy for humans. In fact, there is a famous trilemma known
as Zooko's triangle that describes the inherent difficulty of designing
name systems that simultaneously meet three criteria: secure, de-
centralized, and human-meaningful.

The Monero address posted above is not remotely ”human-mean-

https://en.wikipedia.org/wiki/Zooko%27s_triangle

154

ingful,” however it successfully fulfills the other two criteria. Monero
public addresses are at least 95 characters long, which is difficult to
read and nigh impossible to memorize. Certainly there must be a
way to simplify payment destinations!

The Monero Core Team released the OpenAlias standard to
“square” Zooko's triangle by creating a human-readable way to com-
municate addresses. The OpenAlias standard is a text DNS record on
a fully-qualified domain name (FQDN). Each text record need only
contain two pieces of information: the prefix, and the recipient address.
A recipient_name key-value pair can be added as well, however
it is not necessary. A typical OpenAlias text record looks like:

oa1:xmr

recipient_address=45ttEikQEZWN1m7VxaVN9rjQkpSd-

mpGZ82Gw Ups66neQ1PqbQMno4wMY8F5jiDt2GoHzCtMwa7P-

DPJUJYb1GYrMP4C wAwNp

recipient_name=MoneroFFS

The “oa1:xmr” portion indicates that the record is based on Ope-
nAlias version 1, and that the destination is a Monero address. A
recipient name can be optionally specified, in this case “MoneroFFS”.

Name Size in byte Description

oa1: 4 The record always starts with “oa1:”, which indicates
it is an OpenAlias Version 1 record. If we don't have
that prefix we ignore the record, as it may be an SPF
record or something else that we don't care about.

»

https://openalias.org

155

The OpenAlias standard is extensible for developers, intuitive for
users, and interoperable between both centralized and decentralized
domain systems. The standard can be used with any cryptocurren-
cy, and is already implemented by Monero, Bitcoin (Electrum) and
HyperStake.

Figure 7.1 - The user-readable donate.getmonero.org is resolved by the DNS
server, which sends back the donation address 44AFFq5kSiGBoZ4NMDwYt-
N18obc8AemS33DBLWs3H7otXft3XjrpDtQGv7SqSsaBYBb98uNbr2VB-
BEt7f2wfn3RVGQBEP3A.

Name Size in byte Description

symbol 3 The code for cryptocurrency. The code should
follow the ISO 4217 Rules: for example for Monero
cryptocurrency the simbol is xmr and for Bitcoin
the symbol is btc.

recipient_ad-
dress = address;

17 + address
+ 1

The recipient address. The format
is recipient_address=your_address; where your_ad-
dress is your cryptocoin address. For Monero, it
will be a 95 characters string. Key-value pairs are
separated by a semi-colon and, optionally, a space
for legibility.
This key-value must exist. OpenAlias exists to alias
FQDNs to an “address” of any type, and this is
expressed in this value.

recipient_name
= description;

14 +
d e s c r ip t i on
+ 1

This is not necessary, but useful for the purpose of
confirming the correct recipient with the user, or for
providing the user with the option of adding an entry
to an address book.

156

7.2 Monero_URI: convenient info in text
(for computers)

The Monero uniform resource identifier standard describes a format
for unambiguously communicating key data fields for invoices and
transactions. These URIs are especially handy for merchandising
purposes such as generating QR codes for payments.

Monero's URI syntax follows RFC 3986, and spaces must be
x-www-urlencoded as %20. The example URI below URL shows a
an example string that encodes a request for a 0.0413 XMR payment
sent to address 4BKq...feW5 for the “Mastering Monero book.”

monero:4BKjy1uVRTPiz4pHyaXXawb82XpzLiowSDd8rEQJGq-
vN6AD6kWosLQ6VJXW9sghopxXgQSh1RTd54JdvvCRsXiF41x-
vfeW5?tx_amount=0.0413&tx_description=Mastering%20Mone-
ro%20Book

Parameter Type Description

address String The raw address

tx_payment_id String The proposed
payment ID of
the transaction.
(if mentioned)

recipient_name String The proposed
contact name of
the recipient. (if
mentioned)

tx_amount Float The proposed
amount of the
transaction in
atomic cur-
rency units.

 »

157

Parameter Type Description

tx_description String Describes the
transaction which
should be initiated.

7.3 Monero RPC

Developers integrating Monero can choose whether to utilize Monero's
C++ API (C/C++) or the remote procedure call (RPC) interface. The RPC
methods can be accessed by any programming language with the ability
to make HTTP requests, so we'll take advantage of this flexibility and
include example code for some common tasks.

The Monero daemon (monerod) is accessible via RPC for key activities
such as checking balances or sending funds. The Monero wallet RPC
(monero-wallet-RPC) allows you to manage all wallet functionality
through JSON calls.

The RPC expresses Monero amounts in “atomic units”, which refers
to the smallest fraction of a Monero coin that is recognized by the current
monerod implementation. You can convert easily between formats using:

1 XMR = 1x10¹² atomic units

Use this QR Code to donate 0.05 XMR to the
development fund for Monero project.
Check always if the URL is the following:
monero:44AFFq5kSiGBoZ4NMDwYtN18obc8AemS33D-
BLWs3H7otXft3XjrpDtQGv7SqSsaBYBb98uNbr2VBBEt-
7f2wfn3RVGQBEP3A?tx_amount=0.05&tx_descrip-
tion=Donation%from%Mastering%20Monero%20Book

158

7.3.1 Initialization and configuration (setup &
secure)

First, launch the Monero wallet RPC, specifying the port and location
of your wallet file:

If you wish to use a remote node, simply add the --daemon-ad-
dress flag followed by its address, for example:

Since monero-wallet-rpc doesn't bind your IP address and
the port by default, you must specify --rpc-bind-ip yourip to
connect remotely.

A few security precautions are recommended, since rolling into
production with an open RPC interface is like going on a safari with
no protection! Be sure to set a username and password before your
node is exposed. If you follow these steps to put proper safeguards
in place, your API will be safe.

The --restricted-rpc flag is extremely helpful for limiting
RPC privileges to avoid potential abuse. For example, the restricted
mode ensures that your node will not return privacy-sensitive data
by RPC, and prevents external users from activating mining on your
devices.

$./monero-wallet-rpc --rpc-bind-port 18082
--disable-rpc-login --log-level 2 --wallet-file
your-wallet-file --prompt-for-password

--daemon-address node.moneroworld.com:18089

159

7.3.2 JSON RPC Format

JSON-RPC is a stateless, lightweight RPC protocol, using the JSON
RFC 4672 data format. The specification primarily defines several
data structures, and the rules for processing them. The protocol is
transport-agnostic, meaning that its function is independent of the
underlying transport mechanism. Thus, the same concepts can be
applied within a given process, over sockets, through HTTP connec-
tions, or any other communication channel.

In order to receive any information from the wallet RPC, you
must send a message with the POST method. The JSON-RPC API
accepts messages with the format:

{ “jsonrpc” : version , “method” : method,

“params”: params, “id”: id }

using inputs described by:

Field Description
version JSON RPC protocol version (Monero supports v2.0)
method declare which functionality is called
params specify additional information needed for the desired

method
id number for tracking responses (integers starting from

0)

7.3.3 Example RPC calls

Monero's RPC can be accessed directly from a terminal, as shown
in the following examples. The Monero website hosts thorough

160

documentation describing the specifications and full functionality
of the wallet RPC and daemon RPC.

7.3.3.1 Get balance

A wallet's balance can be queried by the getbalance method:

which returns two outputs: the [total] balance and the un-
locked_balance, which only includes transactions deep enough in
the blockchain to be considered “safe” for spending (e.g. confirmed
as available after 6 blocks).

In this case, the wallet contains 0.14 XMR, and only 0.084 XMR
unlocked.

7.3.3.2 Get address

Query the wallet's address.

$ curl -X POST 127.0.0.1:18082/json_rpc -d
'{“jsonrpc”:”2.0”,”id”:”0”,”method”:”getbal-
ance”}' -H 'Content-Type: application/json'

{“id”: “0”,“jsonrpc”: “2.0”, “re-
sult”: { “balance”: 140000000000, “un-
locked_balance”: 84000000000} }

$ curl -X POST 127.0.0.1:18082/json_rpc -d
'{“jsonrpc”:”2.0”,”id”:”0”,”method”:”getad-

dress”}' -H 'Content-Type: application/json'

https://getmonero.org/resources/developer-guides/daemon-rpc.html
https://getmonero.org/resources/developer-guides/wallet-rpc.html

161

which returns :

7.3.3.3 Create address

Create a new address for an account. Optionally, label the new
address.

{“id”: 0,“jsonrpc”: “2.0”,“result”: {“ad-
dress”: “42uMGYwvLuUGJzqdWZvr47CGCBz1qNNEx-
ZeegcjLPMbaFkBb3XG g6Y1bUwaMbovzGWDXtaASxS-
BYtaiBB4wuDmrAMCygexH”, “addresses”: [{
“address”: “42uMGYwvLuUGJzqdWZvr47CGCBz1qN-
NExZeegcjLPMbaFkBb3XG g6Y1bUwaMbovzGWDXtaASx-
SBYtaiBB4wuDmrAMCygexH”, “address_index”: 0,
“label”: “Primary account”,“used”: false
 },
 {
 “address”: “894PaGJyxRjZU8nP-
7Dh4FuAyzr2dK3VT9ZZX95MxdAGP3HoHEpA bNb8Htg-
p5LKzc1pXQ8zhpokTZtcUTnzeU823oUPUGSpv”,
 “address_index”: 1,
 “label”: “”,
 “used”: false
 },
]
 }
}

$ curl -X POST 127.0.0.1:18082/json_rpc -d '{“json-
rpc”:”2.0”,”id”:”0”,”method”:”create_address”,
“params” : “{“account_index:0,”label”:”Secondary
account”}}' -H 'Content-Type: application/json'
{
 “id”: 0, “jsonrpc”: “2.0”, “result”: {
 “address”: “86KoCQsZHQvSUnp9fFn-
92e5QGUiZtH1qZ1nNx1Jv5eJs94ywbLR2k 11CjZ-
Tq5o4v8j9bx3CEAturCheJqJR7cYdQKT4xE3w”,
“address_index”: 9
 }
}

162

7.3.3.4 Create account

Create an account

$ curl -X POST 127.0.0.1:18082/json_rpc -d
'{“jsonrpc”:”2.0”,”id”:”0”,”method”:”cre-
ate_account”, “params”:{“label”:”Secondary ac-
count”}}' -H 'Content-Type: application/json'

{
 “id”: “0”,
 “jsonrpc”: “2.0”,
 “result”: {
 “account_index”: 1,
 “address”: “88bV1uo76AaKZaWD389kCf5Ef-
PxKFYEKUQbs9ZRJm23E2X2oYgV9b Q54FiY-
6hAB83aDXMUSZF6KWyfeQqzLqaAeeFrk9iic”
 }
}

163

7.3.3.5 Transfer

Transfer (send) an amount of Monero, specified in atomic units.

$ curl -X POST http://127.0.0.1:18082/json_rpc -d
' {“jsonrpc”:”2.0”, ”id”:”0”, ”method”:”transfer”,
”params”:{“destinations”: [{“amount”:100000000,
 ”address”:”9wNgSYy2F9qPZu7KBjvsFgZLTKE2TZgE-
pNFbGka9gA5 zPmAXS35QzzYaLKJRkYTnzgArGNX7T-
vSqZC87tBLwtaC5RQgJ8rm” }, {“amount”:200000000,
 ”address”:”9vH5D7Fv47mbpCpdcthcjU34rqiiAYRCh1tYy-
wmhqnE k9iwCE9yppgNCXAyVHG5qJt2kExa42TuhzQfJbmb-
peGLkVbg8xit” }],”mixin”:4,”get_tx_key”:
true}}' -H 'Content-Type: application/json'
{
 “id”: “0”,
 “jsonrpc”: “2.0”,
 “result”: {
 “fee”: 48958481211,
“tx_hash”: “985180f468637bc6d-
2f72ee054e1e34b8d5097988bb29a2e0cb 763e4464db23c”,
 “tx_key”: “8d62e5637f1fcc9a8904057d6bed-
6c697618507b193e956f77c 31ce662b2ee07”,
 “amount”: 300000000,
 “tx_blob”: “”,
 “tx_metadata”: “”,
 “multisig_txset”: “”
 }
}

164

7.4 Monero integration in practice (Python
and C++ tutorials)

Picking the coding language for these examples is tricky, since every
developer knows that there's no perfect universal programming
language. However, Python is well-suited for Mastering Monero,
since it is a free and open-source scripting language that is relatively
approachable and comprehensible for novices.

The following examples use the newest version, Python 3. Most
Debian-based Linux distributions ship with Python 2 and Python 3
pre-installed. Before starting, you should update and upgrade your
software to ensure that necessary resources are up-to-date:

The code for the following tutorials is freely available on a public
repository. You can directly download the exercises through the
powerful 'git' control version system using the command:

Each tutorial is located on a folder. For example, “Tutorial 1”
will be tutorial-1. To download the resources via Git versioning
system, simply execute:

$ sudo apt-get update && sudo apt-get -y upgrade

$ git clone https://github.com/monerobook/code

https://python.org

165

7.4.1 Tutorial 1 - Get your balance

This program will connect to the daemon via RPC, then query and
print the account balance. From the section introducing RPC, you
might remember the getbalance function (also responds to get_
balance).

We'll start by importing two Python libraries that are very useful
for making POST requests in python: 'requests' and 'json'.

Let's preemptively store some of the information in variables to
avoid cluttering up the requests:

Mastering Monero Tutorial. This is a comment
import requests
import json

Import Setup variables
Url for JSON RPC interface. We assume that your RPC
interface is running on localhost port 18082
url = “http://localhost:18082/json_rpc”

JSON headers . Required
headers = {'content-type': 'application/json'}

RPC input . Adding method name , at the moment we don't
need variables.

rpc_fields = {
	 “method” : “get_balance”
}

166

Recall the standard JSON fields that should be included in an RPC call:

Now everything is prepared, so there's only one thing left to do!
Send all the variables to the JSON RPC interface using the POST
HTTP method:

Save all the above code as tutorial.py (or any name of your choice)
and execute:

Your script should print the output of the getbalances call into
your terminal:

Your script should print the output of the getbalances call into
your terminal:

Adding the JSON RPC version and id. Id is a int variable
which should be incremented each request. First request
is 0 , second is one and ...
rpc_fields.update({“jsonrpc”: “2.0”, “id”: “0”})

execute the rpc request
response = requests.post(url,data=json.dumps(rpc_input),-
headers=headers)
print the response as JSON
print(json.dumps(response.json()))

$ python tutorial.py

{
 “id”: “0”,
 “jsonrpc”: “2.0”,
 “result”: {
 “balance”: 0,
 “multisig_import_needed”: false,
 “unlocked_balance”: 0 }
}

167

While this contains all of the information we need, the output
RPC syntax is not formatted for optimal human readability. Staring
at too many {}'s can become disorienting after a while!

For a cleaner output, we can add a few lines of code to the bottom
of the tutorial script, so that it only prints the balance (or unlocked
balance, if you'd prefer).

Now, running

Should simply return:

You can use RPC methods like this to develop your own personal
client for your Monero wallet!

Get the balance from response array and convert to a
string.
balance = str(response.json().get('result').get('balance'))

print(“Balance is “ + balance)

$ python tutorial.py

Balance is 426700000

168

7.4.2 Tutorial 2 - How to generate a
pseudo-random address

In chapter 5, we introduced the concept of pseudo-random address
generation. To augment the mathematical explanation, here is a
python implementation for you to follow.

First, import necessary libraries and add them to the path.

To code the function generate_random_address, several steps
must be included:

1) Create your seed by pseudo-randomly generating a 32 byte (256-
bit) random number. Use the hexlify library to convert your seed to
a hex-encoded string, stored in the variable seed.

2) Record your secret spend key by reducing the seed to a valid scalar
for the ed25519 elliptic curve. Your secret spend key is simply this
representation of your seed. Verification requires the sc_reduce32
function from the utils library.

3) Calculate your secret view key as the reduced hash of your secret
spend key. The hash_to_scalar function hashes the input, then
converts it to a valid scalar for the ed25519 elliptic curve.

Import libraries. Hexlify for hex code, utils for the
utility, etc.
import os, sys
from binascii import hexlify, unhexlify
sys.path.append('../libraries')
import utils
import ed25519
import base58

169

4) Derive public keys by using the publickey_to_private_key
function to multiply your private keys by the generator point. Your
secret spend key yields your public spend key, and likewise your
secret view key is used to derive your public view key.

5) Begin building your public address by concatenating the network
byte (0x12 for public Monero addresses), the public spend key, and
the public view key. These are the key pieces of information included
in every Monero address.

6) Calculate the checksum that will be appended to the above string
by taking the first 4 bytes (8 hex characters) of its Keccak-256 hash.

7) Encode the info + checksum in Base 58 representation for hu-
man-readability. That's all there is to it! As discussed in Chapter 5,
Monero addresses consist of:

[network byte + public spend key + public view key + checksum]

Continues on next page »

def generate_random_address():
 ## Generate 32 bytes (256 bits) of pseudo-random data
 seed = hexlify(os.urandom(32))

 ## Reduce random data to make it a valid ed25519 scalar
 secret_spend_key = utils.sc_reduce32(seed)

 ## Use a reduced hash of the secret spend key for the
deterministic secret view key
 secret_view_key = utils.hash_to_scalar(secret_spend_key)

170

 ## multiply by the generator point to get public keys
from private keys
 public_spend_key = utils.publickey_to_privatekey(se-
cret_spend_key)
 public_view_key = utils.publickey_to_privatekey(se-
cret_ view_key)
 ## the network byte, public spend key, and public view
key are all concatenated together
 ## 0x12 is the Monero mainnet network byte
 network_byte = “12”
 ## Concatenate the three strings
 data = network_byte + public_spend_key + public_view_key
 hash = utils.keccak_256(data)
 ## checksum is the first 4 bytes (8 hex characters) of
the hash of the previous data
 checksum = hash[0:8]
 address = base58.encode(data + checksum)

 ## Printing the keys

 print(“Secret_spend_key : “ + secret_spend_key)
 print(“Secret_view_key : “ + secret_view_key)
 print(“Public_spend_key : “ + public_spend_key)
 print(“Public_view_key : “ + public_view_key)

 ## Returning address generated
 return address

End

171

7.4.3 Tutorial 3 - Vanity address generator

Vanity addresses refer to cryptocurrency addresses generated to have
some particular prefix that you choose. If you want an address with
a “cat” name, you can use this method to generate a public address
beginning with “4cat”. There are some limitations due to the Monero
address format: You cannot remove the initial 4 (the hex-encoded
network byte, 0x12) and the base 58 encoding excludes some char-
acters (I,l,0,O).

You should never trust website or third party that generates
vanity cryptocurrency addresses for you. There is no way to know
whether those keys were generated securely and not retained by the
service or a snoop.

Here is a small Python script that you can code and verify your-
self, to safely generate your own vanity addresses. The approach is
simple: repeatedly generate addresses until one of the results matches
your criteria. Short vanity strings are recommended, since the time
necessary to brute force a qualifying address increases dramatically
as the length of the target string increases.

Most of the code is contained in while(1), an infinite loop that
will run until a matching address is discovered. With each iteration
through the loop, it calls the generate_random_address function
from the previous example for a fresh address.

As soon as the address is created, the script checks whether the
first characters match the user's desired input. When a suitable
address is discovered, then the script prints the address and exits,
breaking the while loop.

172

import sys
sys.path.append('../libraries')
import address

if (len(sys.argv) != 2):
 print(“usage: python vanity_address.py [desired_prefix]”)
 exit()

if (sys.argv[1][0] != “4”):
 print “Monero addresses must start with the character 4”
 exit()

create random addresses until one of them matches the
desired prefix
bruteforcing takes a while
while(1):
 rand_address = address.generate_random_address()
 if (rand_address[0:len(sys.argv[1])] == sys.argv[1]):
 print(rand_address)
 exit()
 else:
 print(“searching”)

173

7.4.4 Tutorial 4 - How to create a stealth address

The stealth address generation method explained in chapter 5 is
somewhat complex, so a Python implementation is included here for
assistance. Coding through a new process step-by-step can be very
helpful for interpreting and internalizing the mathematics.

The goal of this tutorial is to generate a stealth address, using: a
public view key, a public spend key, and a random private TX key
(256-bit scalar).

First, the necessary dependencies are imported from the folder
libraries

The generate_stealth_address function is defined, carrying
out the necessary mathematical operations to create the unlinkable
address from the public keys and some random information.

import os, sys
library for hex
from binascii import hexlify, unhexlify
sys.path.append('../libraries')
utils and ed25519 libraries
import utils
import ed25519

174

The code can be called like this:

def generate_stealth_address(publicViewKey, privateTxKey,
publicSpendKey, index):

multiply r*A
derivation = utils.generate_key_derivation(publicViewKey,
privateTxKey)

concatenate index to derivation then hash and reduce
Hs(rA|i)
scalar = utils.derivation_to_scalar(derivation, index)

multiply by base point
Hs(rA|i)G
sG = ed25519.scalarmultbase(utils.hex2int(scalar))
interpret the public spend key as a point on the curve
pubPoint = ed25519.decodepoint(unhexlify(publicSpendKey))

add the public spend key to the previously calculated
point
Hs(rA|i)G + B
output = ed25519.edwards(pubPoint, sG)
convert the point to a hex encoded public key
return hexlify(ed25519.encodepoint(output))

print(generate_stealth_address(“be90718b250a06b4b-
cffca6af948240ad6d8951b730a9711f78d4c9decefb4bd”,
“12b793b002ed168f36c9dc8d13c0e820546359452f67136f03087e-
b18208710e”, “6b48d1c30a640b0b33d0062188df2edd4e6acac-
7282b215e86701a644a9f70ba”, “01”))

175

Stealth addresses are not generated deterministically, since some
random data is mixed in. An example output looks like:

7.5 Monero C++ API

While interacting with Monero through the RPC interface is simple
and easy to implement, it has its downsides. You can generate ad-
dresses and subaddresses, and even transfer funds. However, the
RPC methods do not scale effectively, and could cause bottleneck
issues for big enterprise applications.

Is there an alternative? Yes! Monero has a C++ API that can handle
all functionality, including managing wallets and sending transac-
tions.

The C++ API is a little trickier to use than the RPC interface, so
you may not want to play around with it in a production setting,
unless you're quite familiar with Monero integration. Any errors or
problems along the way can break your security and privacy.

7.5.1 Monero libraries

The Monero Core is a collection of several simple libraries that are
necessary or helpful for Monero activity - such as Boost, Ed2559,
and the CryptoNight algorithm.

They are gathered to simplify common processes for developers;
for example, a coder can simply call base58_decode from the
Monero Core libraries instead of needing to manually create the

a2bd788a63555e0847800b56051072d-
b3558ac2f97b58b8021e57c67125b4411

176

function from scratch.

First you must compile libraries from the Monero Core. Once a li-
brary is compiled, an output file is created with a .a or .so extension.

7.5.2 Getting started with C++

To integrate the Monero Core code, you must first compile its librar-
ies. Simply follow the instructions above, and check the dependecies
table in chapter 6. Familiarity with C++ (specifically the basics for
C++11 standard) will be very helpful for the following tutorial.

7.5.3 Tutorial 5 - Recovering all keys from the
private spend key

This tutorial shows how to recover all Monero keys from the pri-
vate spend key, making use of the C++ API and the CMake method.
This tutorial is is intended for Linux-based platforms, since Apple
and Windows have implemented their own libraries (for example,
OpenSSL or Boost).

First, set all of the environment variables and libraries in a file
named CMakeLists.txt. In this tutorial, we'll compile the Monero
Core into /opt/monero folder.

177

cmake_minimum_required(VERSION 3.5)

set(PROJECT_NAME tutorial-5)

project(${PROJECT_NAME})

set(CMAKE_CXX_FLAGS “${CMAKE_CXX_FLAGS} -std=c++11 -ldl”)

if (NOT MONERO_DIR)
 # Path of Monero source code
 set(MONERO_DIR ~/monero)
endif()

message(STATUS MONERO_DIR “: ${MONERO_DIR}”)

set(MONERO_SOURCE_DIR ${MONERO_DIR} CACHE PATH “Path to
the root directory for Monero”)

set location of Monero build tree
set(MONERO_BUILD_DIR ${MONERO_SOURCE_DIR}/build/Linux/
master/release/ CACHE PATH “Path to the build directory
for Monero”)

set(MY_CMAKE_DIR “${CMAKE_CURRENT_LIST_DIR}/cmake” CACHE
PATH “The path to the cmake directory of the current proj-
ect”)
list(APPEND CMAKE_MODULE_PATH “${MY_CMAKE_DIR}”)

set(CMAKE_LIBRARY_PATH ${CMAKE_LIBRARY_PATH} “${MONERO_
BUILD_DIR}” CACHE PATH “Add Monero directory for library
searching”)

find boost
find_package(Boost COMPONENTS
 system
 filesystem
 thread
 date_time
 chrono
 regex

Continues on next page (1/3) »

178

 serialization
 program_options
 date_time
 REQUIRED)

include boost headers
include_directories(
 ${Boost_INCLUDE_DIRS}
)

include_directories(
		 ${MONERO_SOURCE_DIR}/src
		 ${MONERO_SOURCE_DIR}/external
		 ${MONERO_SOURCE_DIR}/build
		 ${MONERO_SOURCE_DIR}/external/easylogging++
		 ${MONERO_SOURCE_DIR}/contrib/epee/include
		 ${MONERO_SOURCE_DIR}/version
		 ${MONERO_SOURCE_DIR}/external/db_drivers/
liblmdb)
Specify source files
set(SOURCE_FILES main.cpp)

Make executable
add_executable(${PROJECT_NAME} ${SOURCE_FILES})

set_target_properties(${PROJECT_NAME} PROPERTIES LINKER_
LANGUAGE CXX)

set(LIBRARIES
 wallet
 blockchain_db
 cryptonote_core
 cryptonote_protocol
 cryptonote_basic
 daemonizer
 cncrypto
 blocks
 lmdb
 ringct
 device

Continues on next page (2/4) »

179

 common
 mnemonics
 epee
 easylogging
 device
 pcsclite
 sodium
 ${Boost_LIBRARIES}
 pthread
 unbound
 crypto
 ringct_basic)

if (Xmr_CHECKPOINTS_LIBRARIES)
 set(LIBRARIES ${LIBRARIES} checkpoints)
endif()

set(LIBS common; blocks; cryptonote_basic; cryptonote_core;
cryptonote_protocol; daemonizer; mnemonics; epee; lmdb;
device; blockchain_db; ringct; wallet; cncrypto; easylog-
ging; version; checkpoints; ringct_basic;)

foreach (l ${LIBS})
	 string(TOUPPER ${l} L)
	 find_library(Xmr_${L}_LIBRARY
			 NAMES ${l}
			 PATHS ${CMAKE_LIBRARY_PATH}
			 PATH_SUFFIXES “/src/${l}” “/src/ringct”
“/src/” “/external/db_drivers/lib${l}” “/lib” “/src/crypto”
“/contrib/epee/src” “/external/easylogging++/”
			 NO_DEFAULT_PATH
)

	 set(Xmr_${L}_LIBRARIES ${Xmr_${L}_LIBRARY})

	 message(STATUS “ Xmr_${L}_LIBRARIES ${Xmr_${L}_LI-
BRARY}”)
	 add_library(${l} STATIC IMPORTED)
set_
property(TARGET ${l} PROPERTY IMPORTED_LOCATION ${Xmr_${L}_

Continues on next page (3/4) »

180

Now that the libraries are added, it's time to develop our specific
program. This derivation of all keys from the private spend key is a
common task, necessary for generating or restoring wallets.

// main.cpp file for Tutorial 5 - Mastering Monero
// https://github.com/monerobook/code/tutorial-5/main.cpp

#include “cryptonote_core/blockchain.h”
#include “common/base58.h”
#include “crypto/crypto-ops.h”
#include “crypto/hash.h”

// Converts crypto::hash into crypto::secret_key or cryp-
to::public_key
template <typename T>
T get_key_from_hash(crypto::hash & in_hash){
	 T* key;
	 key = reinterpret_cast<T*>(&in_hash);
	 return *key;
}

int main(){
 	 // Put here your private spendable key!
	 std::string str_spend_key = “f8f2fba1da00643bbf11f-
fec355a808d2d8ca4e4de14a10476e116abd8dd7f02”;
	 // Specify the network type. It could be cryp-
tonote::nettype, where nettype is MAINNET, TESTNET or
STAGENET
	 cryptonote::network_type nettype = cryptonote::-
MAINNET;	
	 crypto::public_key public_spend_key;

Continues on next page (1/3) »

End (4/4)

LIBRARIES})
endforeach()
target_link_libraries(${PROJECT_NAME} ${LIBRARIES})

181

	 // Convert hex string to binary data
	 cryptonote::blobdata blob;
	 epee::string_tools::parse_hexstr_to_binbuff(str_
spend_key, blob);
	 crypto::secret_key sc = *reinterpret_cast<const
crypto::
secret_key *>(blob.data());
	 std::cout << “Private spend key : ” << sc << st-
d::endl;

	 // Generate public key based on the private key
	 crypto::secret_key_to_public_key(sc, public_spend_
key);
	
	 std::cout << “Public spend key : “ << public_spend_
key << std::endl;
	
	 crypto::hash hash_of_private_spend_key;
	
	 crypto::cn_fast_hash(&sc, sizeof(), hash_of_pri-
vate_spend_key);

	 crypto::secret_key private_view_key;
	 crypto::public_key public_view_key;
	
	 // Generate keys from hash_of_private_spend_key
	 crypto::generate_keys(public_view_key,private_view_
key,get_key_from_hash<crypto::secret_key>(hash_of_private_
spend_key), true);
	
	 std::cout << “\n” << “Private view key : “ << pri-
vate_view_key << std::endl;
	 std::cout << “Public view key : “ << public_view_key
<< std::endl;

	 cryptonote::account_public_address address {pub-
lic_spend_key, public_view_key};
	 std::string public_address;
	 // Get account address as a string
	 public_address = cryptonote::get_account_address_

Continues on next page (2/3) »

182

To compile the code, change to its directory and execute cmake.
If you are in the root of the tutorial code repository, execute:

The results should look similar to:

$ cd tutorial-5 && cmake .

$ cd tutorial-5 && cmake .
-- The C compiler identification is GNU 6.3.0
-- The CXX compiler identification is GNU 6.3.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compil-
er: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
.....

-- Configuring done
-- Generating done
-- Build files have been writ-
ten to: /code/tutorial-5

as_str(nettype, false, address);
	 std::cout << “Monero Address:” << public_address <<
std::endl;
	 return 0;
}

End (3/3) »

183

If you encounter any errors, please first verify that you have
the correct version of CMake (>= v. 3.5.2) and GCC (>= v. 5). The
CMake program will create a makefile for you, then we simply call
the command:

Finally, launch the program by running ./tutorial-5

Private spend key : <f8f2fba1da00643bbf11f-
fec355a808d2d8ca4e4de14a10476e116abd8dd7f02>
Public spend key : <fffb624bd31dfafb015b01c-
beaef28cbff3b2d77af01c54b77d6e1cef04d5f1e>
Private view key : <9227a05c665f684f5b8fef-
815cedd8a911b426c9fa07554c70daacf87757b302>
Public view key : <d79eaf3acfd1f7a93526d2eec-
5bec5b76b880177e2610b69716b4f0577950308>
Monero Address: 4BKjy1uVRTPiz4pHyaXXaw-
b82XpzLiowSDd8rEQJGqvN6AD6kWosLQ6VJX-
W9sghopxXgQSh1RTd54JdvvCRsXiF41xvfeW5

$ make
Scanning dependencies of target tutorial-5
[50%] Building CXX object CMake-
Files/tutorial-5.dir/main.cpp.o
[100%] Linking CXX executable tutorial-5
[100%] Built target tutorial-5

184

Chapter 8

Wallet guide and
troubleshooting tips

8.1 Specific instruction for Monero Official GUI

The following instructions show how to carry out the tasks
described above through the Monero graphical user interface
(GUI). If you are using a different wallet, you can skip this

section.

1. Choose a language

The official Monero GUI can be downloaded from https://getmone-
ro.org/downloads. Once you have unpackaged and launched the
application, you will be presented with a language selection screen:

If you don't see your
language above, please feel
free to submit a translation
to help others!

https://getmonero.org/downloads/
https://getmonero.org/downloads/

185

2. Specify an option

The Monero GUI offers three options for wallet type: Mainnet, Test-
net, and Stagenet.

Choose Mainnet (default option) to access the regular block-
chain with real Monero. The Testnet and Stagenet are two separate
blockchains that are used by developers for developing and testing
new code. The Testnet and Stagenet Monero do not have any real
monetary value, and cannot be transferred to the mainnet.

If this is your first Monero wallet, press “create new wallet.” The
Monero software will generate a new seed for you, and show you
the 25-word seed mnemonic.

186

3. Write down the seed

Remember, the seed is not like a password! The network cannot
restore access to your funds if you lose your seed.

Be sure to write this down and store it in a safe place where nobody
else will find it!

187

4. Enter a password

You can enter a wallet password to keep your fund secure if
somebody else accesses your computer. The wallet password is a
local security feature, like a PIN screen unlock. It does not impact the
cryptography or how your moneroj are stored on the blockchain, so
restoring your wallet from the seed will bypass the local passphrase.

188

5. Download the Monero blockchain

Next, you will have the option to start your own node, or connect
to a remote node.

Running your own node requires at least 60 GB of diskspace to
store the blockchain. If your devices has limited resources, you can
select “connect to a remote node” to configure a lightweight wallet
that accesses data stored elsewhere. You can learn more about the
pros and cons of using a remote node in section 4.2.3 “Local nodes”
versus “remote nodes”.

189

Then.. Welcome to Monero GUI!

190

8.1.2 Receiving Monero with the GUI

The “Receive” tab of the Monero GUI contains both the text and QR-
code forms of your receiving addresses. The “Create new address”
button generates more “subaddresses,” which will all direct to this
same wallet (seed). If you are charging somebody for a particular
amount, you can enter the “Amount,” which will then be encoded
into the QR code.

191

8.1.3 Sending Monero with the GUI

To send Monero, you simply specify the amount that you wish to
send, and the recipient's address. The Payment ID field can be left
blank, unless your recipient specifies a Payment ID in advance. The
Description field is stored locally, so you can leave notes for yourself.
These will not be recovered if you restore your wallet from a seed.

192

Transaction History

193

8.1.4 Proof of Payment with the GUI

Proof of payment verification is available through the GUI under
“prove/check.” The screenshoot above shows the transaction ID,
address, and transaction key from the Maria & Kahn example in
chapter 2.

8.2 Specific instruction for Monero Wallet
CLI

The following instructions show how to carry out the tasks described
above through the Monero command line interface (CLI). If you are
using a different wallet, you can skip this section.

8.2.1 Setting up a wallet with the CLI

The official Monero CLI can be downloaded from https://getmonero.

https://getmonero.org/downloads

194

org/downloads. The command for running the CLI varies depend-
ing on your operating system. In Linux, simply launch ./mone-
ro-wallet-cli from the program folder. You can add extra flags
(documented in this Chapter) if you wish to connect to a remote
node, bind your IP address, or other advanced options.

$ wget https://downloads.getmonero.org/cli/linux64

2014-08-12 (490 MB/s) - 'li-
nux64' saved [45719102/45719102]

$ tar jxvf linux64

./monero/

./monero/monero-wallet-rpc

./monero/monero-blockchain-import

./monero/monero-blockchain-ancestry

./monero/monero-blockchain-usage

./monero/monero-wallet-cli

./monero/monero-blockchain-depth

./monero/monero-gen-trusted-multisig

./monero/monerod

./monero/monero-blockchain-export

./monero/monero-blockchain-blackball

$ cd monero && ./monero-wallet-cli

2018-10-24 18:58:11,024 INFO [de-
fault] Page size: 4096
This is the command line monero wallet. It needs
to connect to a monero daemon to work correctly.

WARNING: Do not reuse your Monero keys on anoth-
er fork, UNLESS this fork has key reuse mitiga-
tions built in. Doing so will harm your privacy.

Monero CODENAME (vX.X.X-release)

Specify wallet file name (e.g., MyWallet). If
the wallet doesn't exist, it will be created.
Wallet file name (or Ctrl-C to quit): (enter the
name of your wallet you want to create) testwallet

Continues on next page (1/3) »

https://getmonero.org/downloads

195

No wallet found with that name. Confirm cre-
ation of new wallet named: testwallet
(Y/Yes/N/No): Yes
Generating new wallet...
Enter a new password for the wal-
let: (enter your secret password)
Confirm password: (confirm your password)
List of available languages for your wallet's seed:
0 : Deutsch
1 : English
2 : Español
3 : Français
4 : Italiano
5 : Nederlands
6 : Português
7 : русский язык
8 : Japanese
9 : Chinese
10 : Esperanto
11 : Lojban
Enter the number corresponding to the lan-
guage of your choice: (from 1 to 10)

Generated new wallet: 4BKjy1uVRTPiz4pHyaXX-
awb82XpzLiowSDd8rEQJGqvN6AD6kWosLQ6VJX-
W9sghopxXgQSh1RTd54JdvvCRsXiF41xvfeW5

View key: 9227a05c665f684f5b8fef815ced-
d8a911b426c9fa07554c70daacf87757b302

Your wallet has been generated!
To start synchronizing with the dae-
mon, use the "refresh" command.
Use the "help" command to see the
list of available commands.
[...]

lamb hexagon aces acquire twang bluntly ar-
gue when unafraid awning academy nail threat-
en sailor palace selfish cadets click sickness
juggled border thumbs remedy ridges border

Continues on next page (2/3) »

196

8.2.2 Receiving Monero

You can find out your address by typing address. If you wish to
combine the address with a payment ID, you can type integrat-
ed_address to generate a random payment ID, or you can specify
a particular ID as an input argument, such as:

You can review your incoming moneroj using the show_trans-
fers command. Block height can be specified to list only recent trans-
actions. For example, to only print transactions since block 650000:

8.2.3 Sending Monero

Use the transfer command to send Monero. To send moneroj to a
single address, you do not have to specify the mixin number ​(during
the October 2018, an hard fork requires to have a fixed mixin number
of 11); you have to text the recipient address​, and the amount to send.

End (3/3)

[wallet 433bhJ]: integrated_ad-
dress 12346780abcdef00

[wallet 433bhJ]: show_transfers in 650000

Starting refresh...
Background refresh thread started
[wallet 433bhJ]:

197

To use the CLI to send the 0.6 XMR transaction describedabove, the
command would be:

8.2.4 Proof of payment

By default, transaction keys are not recorded by the CLI, however
you can enable this by: set store-tx-info 1. You can locate a
transaction key by specifying the transaction ID as the first argument
of get_tx_key, for example:

To verify a transaction key, the syntax is: check_tx_key TXID
TXKEY ADDRESS, so the command to check Maria's transaction key
(from the chapter 2 example) would be:

If you are looking far a payment that has a known payment ID, you
can simply specify this in the payments command, e.g.

[wallet 433bhJ]: transfer 4758W1dAkifB2G1wQK-
mPWRvPs9zdsb5ctRFW2ttQbkQxYHRuPRdHZ9ijq-
J7oxcns9SvtpiH8ti8BRjL3LUHaBURpiz4KF​ ​0.06

[wallet 433bhJ]: get_tx_key
4b540773ddf9e819f0df47708f3d-
3c9f7f62933150b90edc8910 3d36d42ca4b7

[wallet 433bhJ]: check_tx_key
4b540773ddf9e819f0df47708f3d-
3c9f7f62933150b90edc891 03d36d42ca4b7

[wallet 433bhJ]: payments 12346780abcdef00
OutProofV1To53Qu2gegZbUevosKCTwrEdqiECgFyUygutXMEdh

198

8.3 Troubleshooting common problems

8.3.1 Problem: I transferred moneroj to my wallet,
but my balance is still 0 XMR.

Available solutions:

1) [Always] Verify that you copied the correct Monero Address
(sometimes malware can try to edit the copied Monero address);

2) Verify whether transaction actually arrived at your wallet / address
by these steps:

A. Go to the Settings page of the GUI, and press on "Show seed
& keys". Subsequently, copy the private view key.
B. Go to a blockchain explorer, such as xmrchain.net
C.​ Enter your transaction ID / hash.
D.​ Enter your private view key and address under “Decode out-
puts.”
E. Click on decode outputs.
F.​ If the result shows “output true,” it proves that the transaction
was sent and recorded on the blockchain.

3) If step 2 above confirmed that the transaction occurred, then your
moneroj are in the right place, but your wallet has not yet found the
outputs. The Monero GUI uses a local cache that can take a few sec-
onds to refresh, especially on Windows. If this problem persists, try
to press the “Rescanning for outputs” on Monero GUI settings or try
reach out through community channels for support (see chapter 6).

https://xmrchain.net/explorer

199

8.3.2 Problem: My GUI feels buggy / freezes all
the time

First and foremost, it's important to make sure you're running the
latest version. You can check the version number on the Settings
page of the GUI (under Debug info). If you're not running the latest
version, please upgrade first.

It is normal for the GUI to be less responsive during the initial
sync process, during which the monerod daemon requires significant
CPU resources to verify blocks and transactions.

You can limit monerod's CPU usage as follows:

1.	 Go to the Settings page of the GUI.
2.	 Add --max-concurrency 1 to the

“daemon startup flags” field.
3.	 Stop the daemon and exit the GUI.
4.	 Restart the GUI and daemon.

The restart is necessary to restart the daemon with the new
--max-concurrency flag, which configures monerod to only
utilize 1 CPU thread.

200

Glossary

Account

Accounts were created as part of the subaddress scheme. A wallet
has a seed. From this seed, the primary address private spend and
view keys are derived. From these private keys, subaddresses are
derived. Subaddresses are grouped into accounts.

This primary address is the first address in the first account in
the wallet.

Each account has its own balance, and can have multiple sub-
addresses associated with it. Since accounts are only groupings of
subaddresses, there is no such thing as an account address (unless you
count the first subaddress in the account as the “account address”).

So a wallet can have multiple accounts, and each account can
have multiple subaddresses.Since accounts and subaddresses are
deterministically derived from the seed, you only need to know
the seed in order to restore the account/subaddress structure when
restoring a wallet (although any labels you assign to the accounts/
subaddresses will need to be noted separately).

Address

When you send Monero to someone you only need one piece of
information, and that is their Monero address. A Monero Public
address is a set of 95 characters starting with a '4'.

201

Airgap

An air gap, air wall or air gapping is a network security measure
employed on one or more computers to ensure that a secure computer
network is physically isolated from unsecured networks, such as the
public Internet or an unsecured local area network.

The name arises from the technique of creating a network that
is physically separated (with a conceptual air gap) from all other
networks. The air gap may not be completely literal, as networks
employing the use of dedicated cryptographic devices that can tun-
nel packets over untrusted networks while avoiding packet rate or
size variation can be considered air gapped, as there is no ability for
computers on opposite sides of the gap to communicate.

ASIC

An Application-Specific Integrated Circuit (ASIC) is an integrated
circuit (IC) customized for a particular use, rather than intended
for general-purpose use. For example, a chip designed to run in a
digital voice recorder or a high-efficiency Bitcoin miner is an ASIC.

ASIC Resistance

ASIC resistance refers to measures taken by some cryptocurrencies
to ensure that their mining algorithm is not compatible with this
specialized equipment. See chapter 4, 5 and 6 to learn more about
how the Monero community actively ensures that our CryptoNight
algorithm is only accessible to CPU and GPU miners.

202

Base32 Address (Kovri)

A Base32 address is a shortened, encoded version of an I2P address.
The Base32 address is the first part in a .b32.i2p hostname.

Bitmonero

BitMonero, previous name for the Monero Project, see chapter 1.
Some legacy references are still included; for example, logs and the
blockchain are stored in the ~/.bitmonero folder by default.

Block

A block is a container of transactions, with a new block being added
to the blockchain once every 2 minutes on average.

Blocks also contain a special type of transaction, the coinbase trans-
action, which add newly created Monero to the network. Blocks are
created through the process of mining, and the node that successfully
mines the block then broadcasts it to each of the nodes connected to
it, who subsequently re-broadcast the block until the entire Monero
network has received it

Blockchain

A blockchain is a distributed database that continuously grows with
a record of all of the transactions that have occurred with a given
cryptocurrency. This database is often referred to as a ledger because
the data contains a large list of transactions that have taken place.

203

In Monero, these transactions are packaged together into blocks
every 2 minutes (on average), and all miners and nodes on the net-
work have copies of these blocks.

Bulletproofs

Bulletproofs are a new mathematical system for verifiable masked
transaction amounts. Bulletproofs shrinks transaction size by ~80%,
and thus reduce fees dramatically.

Change

Monero sent as part of a transaction, that returns to your account
instead of going to another recipient.

Coinbase Transaction

A special type of transaction included in each block, which contains
a small amount of Monero sent to the miner as a reward for their
mining work.

Command Line interface

A command line interface (or CLI) is a text-based interface used for
entering commands via terminal. You can download the official Mone-
ro CLI (free and open source) at https://getmonero.org/downloads/

Consensus

Consensus describes a property of distributed networks like Monero
where most of the participants follow the rules, and thus reject bad
participants.

204

Cryptocurrency

A digital currency in which encryption techniques are used to reg-
ulate the generation of units of currency and verify the transfer of
funds, usually operating independently of a central bank.

Cryptographic Signature

A cryptographic method for proving ownership of a piece of infor-
mation, as well as proving that the information has not been modified
after being signed.

Decoys

When constructing a Monero transaction, the term “decoy” refers
to an output (not belonging to the spender) that is selected pseu-
do-randomly from the blockchain to serve as a mix-in for the ring
signature. See section 5.4.3.

Denominations

A denomination is a proper description of a currency amount. it is
oftentimes a sub-unit of the currency. For example, traditionally a
cent is 1/100th of a particular unit of currency.

Monero denomination names add SI prefixes after dropping the
initial “mo” for ease of use. The smallest unit of Monero is 1 piconero
(0.000000000001 XMR). The plural amount for Monero is moneroj.

205

Name Base 10 Amount
piconero 10⁻¹² 0.000000000011
nanonero 10⁻⁹ 0.000000001
micronero 10⁻⁶ 0.000001
millinero 10⁻³ 0.001
centinero 10⁻² 0.01
decinero 10⁻¹ 0.1
MONERO 10⁰ 1
decanero 10¹ 10
hectonero 10² 100
kilonero 10³ 1,000
meganero 10⁶ 1,000,000

Difficulty

The difficulty is a network parameter that impacts how long it will
take miners to find new blocks, by raising or lowering the bar for
hash value that must be satisfied to complete a block. If more miners
join the network, the difficulty increases to prevent blocks from being
discovered too quickly (and the converse if network hash rate drops)

Encryption

In cryptography, encryption is the process of encoding messages or
information in such a way that only authorized parties can decode
and read what is sent. Encryption does not of itself prevent
interception, but denies the message content to the interceptor.

206

Fees

Each transaction includes a fee that is collected by whichever miner
includes the transaction in a completed block. Users with high-priority
transactions can attach a relatively higher fee to incentivize miners
to confirm the transaction sooner.

Fungibility

In economics, fungibility is the property of a good or a commodity
whose individual units are essentially interchangeable. Cryptocurren-
cies with transparent ledgers lack this property, since each coin has
a unique history, with its story recorded publicly. Monero achieves
fungibility by combining several privacy technologies to prevent
this deletrious information from being stored on the blockchain,
thus rendering all moneroj indistinguishable.

Fluffy Blocks

A block is made up of a header and transactions. Fluffy Blocks only
contain a header, a list of transaction indices, and any transactions
that the node recieving the block may be missing. This saves band-
width because nodes might already know about most or all of the
transactions in the block and they don't need to be sent them again.

I2P

The I2P network provides strong privacy protections for communi-
cation over the Internet. Many activities that would risk your privacy
on the public Internet can be conducted anonymously inside I2P.

207

Integrated address

An integrated address is an address combined with an encrypted
64-bit payment ID. A raw integrated address is 106 characters long.

Kovri

Kovri is a C++ implementation of the I2P network. Kovri is currently
in heavy, active development and not yet integrated with Monero.
When Kovri is integrated into your Monero node, your transactions
will be more secure than ever before.

Mining

The process of cryptographically computing a mathematical proof
for a block, containing a number of transactions, which is then added
to the blockchain.

Mining is the distributed process of confirming transactions on
the public ledger of all transactions, as known as blockchain. Monero
nodes use the blockchain to distinguish legitimate transactions from
attempts to re-spend coins that have already been spent elsewhere.

Monero is powered strictly by Proof of Work. It employs a mining
algorithm that has the potential to be efficiently tasked to billions of
existing devices (any modern x86 CPU and many GPUs). Monero
uses the CryptoNight Proof of Work (PoW) algorithm, which is
designed for use in ordinary CPUs and GPUs.

The smart mining feature allows transparent CPU mining on the
user's computer, far from the de facto centralization of mining farms

208

and pool mining, pursuing Satoshi Nakamoto's original vision of a
true P2P currency.

Mnemonic Seed

A 13 or 25 word phrase used to backup a Monero account, available
in a number of languages. This 25-word phrase (13 words in the case
of MyMonero) has all the information needed to view and spend
funds from a Monero account.

Monero

The most private cryptocurrency.

Node

A device on the internet running the Monero software, with a full
copy of the Monero blockchain, actively assisting the Monero network.

OpenAlias

At its most basic, OpenAlias is a TXT DNS record on a FQDN (fully
qualified domain name). The Monero Core Team released a stan-
dard called OpenAlias which permits much more human-readable
addresses and “squares” the Zooko's triangle. OpenAlias can be
used for any cryptocurrency and is already implemented in Monero.

Payment ID

Payment ID is an arbitrary and optional transaction attachment that
consists of 32 bytes (64 hexadecimal characters) or 8 bytes (in the

209

case of integrated addresses).

The Payment ID is usually used to identify transactions to mer-
chants and exchanges: Given the intrinsic privacy features built into
Monero, where a single public address is usually used for incoming
transactions, the Payment ID is especially useful to tie incoming
payments with user accounts.

Since the 0.9 Hydrogen Helix version, Payment IDs can be en-
crypted and embedded in a payment address called Integrated
Address (in fact it's the integration between the payment ID and
Monero Address). The Payment IDs of this type should be 64-bits
and are encrypted with a random one-time key known only to the
sender and receiver.

It is recommended to use the official wallet's integrated_address
command to automatically generate Integrated Addresses that con-
tain Compact Payment IDs. If you want to use the command line,
you can generate Payment IDs as follows:

$ openssl rand -hex 8

Generating a Payment ID with 8 bytes

$ openssl rand -hex 32

Generating a Payment ID with 32 bytes

210

Pedersen Commitment

Pedersen commitments are cryptographic algorythms that allow
a prover to commit to a certain value without revealing it or being
able to change it.

When you spend Monero, the value of the inputs that you are
spending and the value of the outputs you are sending are encrypted
and opaque to everyone except the recipient of each of those outputs.
Pedersen commitments allow you to send Monero without revealing
the value of the transactions. Pedersen commitments also make it
possible for people to verify that transactions on the blockchain are
valid and not creating Monero out of thin air.

As long as the encrypted output amounts created, which include
an output for the recipient and a change output back to the send-
er, and the unencrypted transaction fee is equal to the sum of the
inputs that are being spent, it is a legitimate transaction and can be
confirmed to not be creating Monero out of thin air.

Pedersen commitments mean that the sums can be verified as be-
ing equal, but the Monero value of each of the sums and the Monero
value of the inputs and outputs individually are undeterminable.
Pedersen commitments also mean that even the ratio of one input
to another, or one output to another is undeterminable.

It is unclear which inputs are really being spent as the ring signa-
ture lists both the real inputs being spent and decoy inputs, therefore
you don't actually know which input Pedersen commitments need
to be summed. That's okay, because the ringCT ring signature only
has to prove that for one combination of the inputs the outputs are

211

equal to the sum of the inputs. For mathematical reasons, this is
impossible to forge.

Ring Signatures

In cryptography, a ring signature is a type of digital signature that
can be performed by any member of a group of users that each have
keys. Therefore, a message signed with a ring signature is endorsed
by someone in a particular group of people. One of the security
properties of a ring signature is that it should be computationally
infeasible to determine which of the group members' keys was used
to produce the signature.

For instance, a ring signature could be used to provide an anony-
mous signature from “a high-ranking White House official”, without
revealing which official signed the message. Ring signatures are
right for this application because the anonymity of a ring signature
cannot be revoked, and because the group for a ring signature can
be improvised (requires no prior setup).

A ring signature makes use of your account keys and a number
of public keys (also known as outputs) pulled from the blockchain
using a triangular distribution method. Over the course of time,
past outputs could be used multiple times to form possible signer
participants. In a ring of possible signers, all ring members are equal
and valid. In Monero, ring signatures are used to conceal the sender
of the reaction, by referencing several *possible* inputs for the trans-
action (including decoys).

212

Ring Size

Ring size refers to the total number of possible signers in a ring signa-
ture. If a ring size of 11 is selected for a given transaction, this means
that there are 10 decoy outputs in addition to your “real” output.

Stealth Address

Stealth addresses are an important part of Monero's inherent pri-
vacy. They allow and require the sender to create random one-time
addresses for every transaction on behalf of the recipient. The recip-
ient can publish just one address, yet have all of his/her incoming
payments go to unique addresses on the blockchain, where they
cannot be linked back to either the recipient's published address or
any other transactions' addresses. By using stealth addresses, only
the sender and receiver can determine where a payment was sent.

Tail Emission

Monero block rewards will never drop to zero. Block rewards will
gradually drop until tail emission commences at the end of May 2022.
At this point, rewards will be fixed at 0.6 XMR per block.

Transactions

A cryptographically signed container that details the transfer of
Monero to a recipient (or recipients).

The parameters of a transaction contain one or more recipient
addresses with corresponding amounts of funds and a ring size pa-
rameter that specifies the number outputs bound to the transaction.

213

The more outputs that are used, a higher degree of obfuscation is
possible, but that comes with a cost. Since a transaction gets larger
with more outputs, the transaction fee will be higher.

It is possible to form a transaction offline, which offers additional
privacy benefits.

A transaction can be uniquely identified with the use of an optional
Transaction ID, which is usually represented by a 32-byte string (64
hexadecimal characters).

Wallet

A Monero account, or wallet, stores the information necessary to
send and receive moneroj. In addition to sending and receiving, the
Monero Wallet software keeps a private history of your transactions
and allows you to cryptographically sign messages. It also includes
Monero mining software and an address book.

214

Join the Monero community.
The doors are open, the fire is already lit,

and the people are welcoming.

